

BAKASH Sophie

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: BA91878, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Bearings. Mathswatch Clip: 124

Topic 2: Simple Bounds. Mathswatch Clip: 132

Topic 3: Missing Mean Questions. Mathswatch Clip: NA

Topic 4: Standard Form. Mathswatch Clip: 83

Topic 5: Changing Ratios. Mathswatch Clip: NA

1) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

1) Bearings: Medium

9. The bearing of a ship from a lighthouse is 050°

Work out the bearing of the lighthouse from the ship.

DRAW A SKETCH!

If accurate, you can
measure the bearing

230 ...

(2 marks)

1) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

2) Simple Bounds: Easier

 A piece of string has a length of 55 mm to the nearest mm. (a) Write down the shortest possible length of the piece of string. 		
(a) Write down the shortest possible length of the piece of string. (b) Write down the greatest possible length of the piece of string.	<u>54.5</u>	mm (1)
	<u>55.5</u>	mm (1) (2 marks)
2. Chelsea's height is 158 cm to the nearest cm. (a) Write down Chelsea's minimum possible height.	157.5	s cm
(b) Write down Chelsea's maximum possible height.		(1)
	158.5	(1) (2 marks)

2) Simple Bounds: Medium

3.			nearest decimal pla nearest whole numb			
	a)	What is the error	nterval for A?			
					4.15 ≤ <i>A</i> <	4.25
				, 		_ cm
	b)	What is the lower	bound of B?			(1)
				-	12.5	_ cm
						(1)
	c)	What is the error i				
			Lower bound A+B Upper bound A+B			
				$16.65 \le A +$	B < 17.75	

cm

(1)

2) Simple Bounds: Harder

4.

The sides of the rectangle above are measured to the nearest cm.

a) Work out a lower bound for the perimeter.

Lower bounds for the sides are 4.5cm and 7.5cm So lower bounds for perimeter is $2\times4.5 + 2\times7.5 = 9 + 15 = 24cm$

<u>24cm</u>

b) Work out the upper bound for the perimeter.

Upper bounds for the sides are 5.5cm and 8.5cm So lower bounds for perimeter is $2 \times 5.5 + 2 \times 8.5 = 11 + 17 = 28cm$

28cm (4 marks)

5. Tom has 100 identical pens.

Each of these pen weighs 5 grams to the nearest gram.

Work out the greatest possible total weight of all 100 pens. Give your answer in kilograms.

Upper bound for weight of one pen: 5.5 g

So for 100 pens upper bound is $100 \times 5.5 = 550g$

One kilogram = 1000 grams so

550g = 0.55kg

BAKASH Sophie, Page 7 /480 kg

(3 marks)

3) Missing Mean Questions: Easier

3) Missing Mean Questions: Medium

BAKASH Sophie, Page 9 /480

3) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

 $28 \times 10 = 280$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

4) Standard Form: Easier

1. (a) Write the number 0.00037 in standard form.

(June)

3.7×10⁴

(b) Write $8.25 \times 10^{\frac{3}{3}}$ as an ordinary number.

(1)

8250

(c) Work out $(2.1 \times 10^8) \times (6 \times 10^{-5})$. Write your answer in standard form.

$$2.1 \times 10^8 \times 6 \times 10^{-5}$$

= 12.6×10^3
= 1.26×10^4

 1.26×10^4 (2)

(4 marks)

2. (a) Write 6.43×10^5 as an ordinary number.

643000

(1)

(b) Work out the value of $2 \times 10^7 \times 8 \times 10^{-12}$ Give your answer in standard form.

$$2 \times 10^{7} \times 8 \times 10^{-12}$$

$$= 16 \times 10^{-5}$$

$$= 1.6 \times 10^{-4}$$

1.6×10-4

(2)

(3 marks)

4) Standard Form: Medium

$$p^2 = \frac{x - y}{xy}$$

$$x = 8.5 \times 10^9$$

 $v = 4 \times 10^8$

Find the value of p.

Give your answer in standard form correct to 2 significant figures.

$$\rho^{2} = \frac{8.5 \times 10^{9} - 4 \times 10^{8}}{8.5 \times 10^{9} \times 4 \times 10^{8}} = \frac{8.1 \times 10^{9}}{3.4 \times 10^{18}}$$

$$= 2.38235... \times 10^{-9}$$

$$= 2.4 \times 10^{-9} (2sf).$$

$$\rho = \sqrt{2.38235... \times 10^{-9}}$$

$$= 4.880935... \times 10^{-5}$$

$$= 4.9 \times 10^{-5} (2sf)$$

4,9 ×10-5 (2sf)

(4 marks)

$$y^2 = \frac{ab}{a+b}$$

$$a = 3 \times 10^8$$
$$b = 2 \times 10^7$$

Find y.

Give your answer in standard form correct to 2 significant figures.

$$y^{2} = \frac{3 \times 10^{8} \times 2 \times 10^{7}}{3 \times 10^{8} + 2 \times 10^{7}}$$

$$= \frac{6 \times 10^{15}}{3.2 \times 10^{8}}$$

$$= 18750000$$

$$= 18750000$$

$$= 14330.127...$$

$$= 4300 (2sf)$$

$$= 4.3 \times 10^{3} (2sf)$$

$$= 4.3 \times 10^{3} (2sf)$$

$$= 4.3 \times 10^{3} (2sf)$$
(4 marks)

4) Standard Form: Harder

Worded Standard Form

1) The world's smallest snail travels 4×10^{-3} m a month. How many months would it take for the snail to travel? 2×10^{-1} m?

2)

The time taken for light to reach Earth from the edge of the known universe is 14 000 000 000 years.

Light travels at the speed of 9.46×10^{12} km/year.

Work out the distance, in kilometres, from the edge of the known universe to Earth. Give your answer in standard form.

$$S = \frac{D}{T}$$

$$D = 9.46 \times 10^{12} \times 1.4 \times 10^{10}$$

$$= 13.244 \times 10^{22}$$

$$= 1.3244 \times 10^{23}$$

5) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12 Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

5) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

5) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

BROOKES Max

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: BR91879, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Missing Mean Questions. Mathswatch Clip: NA

Topic 2: Venn diagrams.. Mathswatch Clip: 127

Topic 3: Inequalities Regions. Mathswatch Clip: 198

Topic 4: More Difficult Rearranging Formulae. MW: 190

Topic 5: Pythagoras. Mathswatch Clip: 150

1) Missing Mean Questions: Easier

1) Missing Mean Questions: Medium

BROOKES Max, Page 19 /480

1) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

 $28 \times 10 = 280$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

2) Venn diagrams.: Easier

Solution for Question 1:

Number of people that owned dogs only: 64 - 34 = 30

Number of people that owned cats only: 80 - 34 - 30 = 16

Solution for Question 2:

- a) Number of people that only had a black pen: 60 37 18 = 5
- b) Probability of a person owning both types of pen:

$$\frac{18}{60} = \frac{3}{10}$$

2) Venn diagrams.: Medium

Solution for Question 3:

Solution for Question 4:

a) Tea: 6 + 12 = 18Coffee: 9 + 12 = 21

Therefore, False

- b) False
- c) False

Solution for Question 5:

a) i) $A \cap B = A \text{ and } B = \{9,15\}$

ii) A U B = A or B = $\{3,5,6,12,18\}$

2) Venn diagrams.: Harder

Solution for Question 6:

Number of people who replied with cats only:

$$b-a-4$$

3) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

3) Inequalities Regions: Medium

6. (a) On the grid below, draw straight lines and use shading to show the region \mathbb{R} that satisfies the inequalities

The point P with coordinates (x, y) lies inside the region \mathbb{R} . x and y are **integers**.

(b) Write down the coordinates of **all** the points of \mathbb{R} whose coordinates are both integers.

$$(2,2)$$
 $(2,3)$ $(2,4)$ $(3,3)$

3) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

4) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$a_3 = d + ac$$

$$a_4 = d + ac$$

$$q = \frac{\partial}{\partial t} + \alpha C \tag{3}$$
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$M + 21 = 5n$$
 $M = 11$
 $M = 11$

4) More Difficult Rearranging Formulae: Medium

10.
$$P = \frac{n^2 + a}{n + a}$$

Rearrange the formula to make a the subject.

$$p(n+a) = n^2 + a$$

$$pn + pa = n^2 + a$$

$$pa - a = n^2$$

$$a(p-1) = n^2$$

$$a = n^2$$

(Total 4 marks)

$$\frac{x}{x+c} = \frac{p}{q}$$

Make x the subject of the formula.

$$x = p(x+c)$$

$$x(2-p) = cp$$

$$x = cp$$

$$y = p$$

BROOKES Max, Page 28 /48 $^{\chi}$ =..... (Total 4 marks)

4) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fv = v$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$u = fv$$

$$fv = fv$$

5) Pythagoras: Easier

1.

Diagram NOT accurately drawn

PQR is a right-angled triangle.

PQ = 16 cm.

PR = 8 cm.

Calculate the length of QR.

Give your answer correct to 2 decimal places.

$$QR^2 = 16^2 - 8^2 = 192$$

$$QR = \sqrt{192} = 13.86 \ cm$$

....13.86.... cm

(3 marks)

2.

Diagram NOT accurately drawn

XYZ is a right-angled triangle.

XY = 3.2 cm.

XZ = 1.7 cm.

Calculate the length of YZ.

Give your answer correct to 3 significant figures.

$$YZ^2 = 3.2^2 + 1.7^2 = 13.13$$

$$YZ = \sqrt{13.13} = 3.62 \ cm$$

BROOKES Max, Page 30 /480

5) Pythagoras: Medium

7.

old version answers:

Q11 22.4 cm

Q12 11.9cm

Diagram NOT accurately drawn

A rectangular television screen has a width of 45 cm and a height of 34 cm.

Work out the length of the diagonal of the screen. Give your answer correct to the nearest centimetre.

$$x^2 = 45^2 + 34^2 = 3181$$

$$x = \sqrt{3181} = 56 \ cm$$

.....cm (4 marks)

8.

Diagram NOT accurately drawn

Work out the length, in centimetres, of *AM*. Give your answer correct to 2 decimal places.

$$BM = \frac{1}{2}BC = 4 \ cm$$

$$AM^2 = 7^2 - 4^2 = 38$$
00KES Max, Page 31/480

5.74 cm

5) Pythagoras: Harder

13. ABCD is a trapezium.

Diagram NOT accurately drawn

AD = 10 cm AB = 9 cm DC = 3 cm Angle ABC = angle BCD = 90°

Calculate the length of *AC*. Give your answer correct to 3 significant figures.

$$AP = 9 - 3 = 6 cm$$

 $PD^2 = 10^2 - 6^2 = 64$
 $BC = PD = \sqrt{64} = 8 cm$
 $AC^2 = 9^2 + 8^2 = 145$
 $AC = \sqrt{145} = 12.0$ cm

(5 marks)

14. A ladder is 6 m long.

The ladder is placed on horizontal ground, resting against a vertical wall.

The instructions for using the ladder say that the bottom of the ladder must not be closer than 1.5 m from the bottom of the wall.

How far up the wall can the ladder reach? Give your answer correct to 1 decimal place.

$$h^2 = 6^2 - 1.5^2 = 33.75$$

 $h = \sqrt{33.75} = 5.8 m$

BROOKES Max, Page 32 /480

BURNS Megan

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: BU91880, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Angles in Polygons. Mathswatch Clip: 123

Topic 2: Bearings. Mathswatch Clip: 124

Topic 3: Solving Quadratics Using the Formula. MW: 191

Topic 4: Venn diagrams.. Mathswatch Clip: 127

Topic 5: Pythagoras. Mathswatch Clip: 150

1) Angles in Polygons: Easier

1. Each exterior angle of a regular polygon is 30°.

Work out the number of sides of the polygon.

(2 marks)

2.

Diagram **NOT** accurately drawn

Work out the size of an exterior angle of a regular pentagon.

72 .

(2 marks)

3.

Diagram **NOT** accurately drawn

Calculate the size of the exterior angle of a regular hexagon.

1) Angles in Polygons: Medium

4. The size of each exterior angle of a regular polygon is 40°.

Work out the number of sides of the regular polygon.

(2 marks)

5. The size of each interior angle of a regular polygon is 156°. Work out the number of sides of the polygon.

180 - 156 = 24 (Extenor angle) 360 - 24 = 15

15

(3 marks)

6. Here is a regular polygon with 9 sides.

Diagram NOT accurately drawn

Work out the size of an exterior angle.

40 .

1) Angles in Polygons: Harder

11.

Diagram **NOT** accurately drawn

ABCDE and EHJKL are regular pentagons. AEL is an equilateral triangle.

Work out the size of angle DEH.

Pentagon:
$$180 \times (n-2)$$

= $180 \times 3 = 540 = 108$

84 (4 marks)

2) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

2) Bearings: Medium

3.

(b) On the diagram, draw a line on a bearing of 107° from A.

clockwise

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

(b) Mark the position of R with a cross (×) and label it R.

(2)

2) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

3) Solving Quadratics Using the Formula: Easier

1. Solve
$$3x^2 + 7x - 13 = 0$$

Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b \pm \sqrt{b^2 - 4ac}$$

$$= -7 \pm \sqrt{7^2 - 4x3x - 13} = -7 \pm \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$x = 5.55$$
 or $x = -8.55$

BURNS Megan, Page 40 /480

3) Solving Quadratics Using the Formula: Medium

3. Solve $x^2 + 3x - 5 = 0$ Give your solutions correct to 4 significant figures.

$$\alpha = 1 \quad b = 3 \quad c = -5$$

$$\alpha = -b \pm \sqrt{b^2 - 4ac}$$

$$= -3 \pm \sqrt{9 - (4x \times 1x - 5)}$$

$$= -3 \pm \sqrt{29}$$

$$= -3 \pm \sqrt{29}$$

$$\alpha = 1.192582404 \text{ or } -4.192582404$$

$$x = 1.193$$
 or -4.193

(3 marks)

4. Solve this quadratic equation.

$$x^2 - 5x - 8 = 0$$

Give your answers correct to 3 significant figures.

$$\alpha = 1 \quad b = -5 \quad c = -8$$

$$\alpha = \frac{5 \pm \sqrt{25 - (4x1x - 8)}}{2}$$

$$= \frac{5 \pm \sqrt{57}}{2}$$

$$\alpha = 6.274917218 \quad \text{or } -1.274917218$$

$$x = ...6$$
 BURNS Megan; Page 41 P488 = ... 1 . 2 . 7

3) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$

$$18$$

$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = 4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

1.38 cm

4) Venn diagrams.: Easier

Solution for Question 1:

Number of people that owned dogs only: 64 - 34 = 30

Number of people that owned cats only: 80 - 34 - 30 = 16

Solution for Question 2:

- a) Number of people that only had a black pen: 60 37 18 = 5
- b) Probability of a person owning both types of pen:

$$\frac{18}{60} = \frac{3}{10}$$

4) Venn diagrams.: Medium

Solution for Question 3:

Solution for Question 4:

a) Tea: 6 + 12 = 18Coffee: 9 + 12 = 21Therefore, False

b) False

c) False

Solution for Question 5:

a)

i)
$$A \cap B = A \text{ and } B = \{9,15\}$$

ii) A U B = A or B =
$$\{3,5,6,12,18\}$$

4) Venn diagrams.: Harder

Solution for Question 6:

Number of people who replied with cats only:

$$b-a-4$$

5) Pythagoras: Easier

1.

Diagram NOT accurately drawn

PQR is a right-angled triangle.

PQ = 16 cm.

PR = 8 cm.

Calculate the length of QR.

Give your answer correct to 2 decimal places.

$$QR^2 = 16^2 - 8^2 = 192$$

$$QR = \sqrt{192} = 13.86 \ cm$$

....13.86.... cm

(3 marks)

2.

Diagram NOT accurately drawn

XYZ is a right-angled triangle.

XY = 3.2 cm.

XZ = 1.7 cm.

Calculate the length of YZ.

Give your answer correct to 3 significant figures.

$$YZ^2 = 3.2^2 + 1.7^2 = 13.13$$

$$YZ = \sqrt{13.13} = 3.62 \ cm$$

BURNS Megan, Page 46 /480

5) Pythagoras: Medium

3.

ABC is a right-angled triangle.

$$AB = 8 \text{ cm},$$

 $BC = 11 \text{ cm}.$

Calculate the length of AC.

Give your answer correct to 3 significant figures.

$$AC^2 = 8^2 + 11^2 = 185$$

$$AC = \sqrt{185} = 13.6 \ cm$$

.....cm (3 marks)

4.

Angle *MLN* = 90°. *LM* = 3.7 m. *MN* = 6.3 m.

Work out the length of LN.

Give your answer correct to 3 significant figures.

$$LN^2 = 6.3^2 - 3.7^2 = 26$$

$$LN = \sqrt{26} = 5.10 m$$

BURNS Megan, Page 47 /480

5) Pythagoras: Harder

13. ABCD is a trapezium.

Diagram NOT accurately drawn

AD = 10 cmAB = 9 cmDC = 3 cmAngle ABC = angle BCD = 90°

Calculate the length of AC. Give your answer correct to 3 significant figures.

$$AP = 9 - 3 = 6 cm$$
 $PD^2 = 10^2 - 6^2 = 64$
 $BC = PD = \sqrt{64} = 8 cm$
 $AC^2 = 9^2 + 8^2 = 145$
 $AC = \sqrt{145} = 12.0$ cm

(5 marks)

14. A ladder is 6 m long.

The ladder is placed on horizontal ground, resting against a vertical wall.

The instructions for using the ladder say that the bottom of the ladder must not be closer than 1.5 m from the bottom of the wall.

How far up the wall can the ladder reach? Give your answer correct to 1 decimal place.

$$h^2 = 6^2 - 1.5^2 = 33.75$$

 $h = \sqrt{33.75} = 5.8 m$

BURNS Megan, Page 48 /480

5.8

FARTHING Rachel

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: FA91881, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Angles in Polygons. Mathswatch Clip: 123

Topic 2: Bearings. Mathswatch Clip: 124

Topic 3: Writing one number as % of another. MW: 88

Topic 4: Changing Ratios. Mathswatch Clip: NA

Topic 5: Inequalities Regions. Mathswatch Clip: 198

1) Angles in Polygons: Easier

1. Each exterior angle of a regular polygon is 30°.

Work out the number of sides of the polygon.

(2 marks)

2.

Diagram **NOT** accurately drawn

Work out the size of an exterior angle of a regular pentagon.

72 .

(2 marks)

3.

Diagram **NOT** accurately drawn

Calculate the size of the exterior angle of a regular hexagon.

1) Angles in Polygons: Medium

4. The size of each exterior angle of a regular polygon is 40°.

Work out the number of sides of the regular polygon.

(2 marks)

5. The size of each interior angle of a regular polygon is 156°. Work out the number of sides of the polygon.

$$180 - 156 = 24$$
 (Extenor angle)
 $360 - 24 = 15$

(3 marks)

6. Here is a regular polygon with 9 sides.

Diagram NOT accurately drawn

Work out the size of an exterior angle.

40 .

1) Angles in Polygons: Harder

11.

Diagram **NOT** accurately drawn

ABCDE and EHJKL are regular pentagons. AEL is an equilateral triangle.

Work out the size of angle DEH.

Pentagon:
$$\frac{180 \times (n-2)}{n}$$

= $\frac{180 \times 3}{5} = \frac{540}{5} = 108$

84 (4 marks)

2) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

2) Bearings: Medium

3.

(b) On the diagram, draw a line on a bearing of 107° from A.

clockwise

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

On the map R is 6 cm from Q.

(b) Mark the position of R with a cross (×) and label it R.

(2)

2) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

3) Writing one number as % of another: Easier

FARTHING Rachel, Page 56 /480

(2 Marks)

3) Writing one number as % of another: Medium

5) In a sale a coat costs £240. Before the sale the coat was priced at £350. Work out the percentage reduction.

$$\begin{aligned} \textit{Percentage reduction} &= \frac{\textit{actual reduction}}{\textit{original amount}} \times 100 \\ &= \textit{actual reduction} = 350 - 240 = 110 \\ \\ \textit{Percentage reduction} &= \frac{110}{350} \times 100 = 31.4\% \end{aligned}$$

31.4%

(2 Marks)

6) The diagram shows the side elevation of a cylinder container of tennis balls. Each tennis ball has a radius of 3.2cm.

What percentage of the volume of the container is filled by tennis balls?

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

(5 Marks)

3) Writing one number as % of another: Harder

7) The average adult should have a maximum of 90g of sugar a day.

Tom buys this can of soft drink. His friend tells him that it is over 55% of his daily allowance. Is she correct? You **must** show your working.

1m1 contains
$$\frac{15.7}{100} = 0.157$$
g sugar

 $330m1 \text{ contains } 0.157 \times 330 = 51.81g \text{ sugar}$

$$\frac{51.81}{90} \times 100 = 57.6\%$$

His friend is correct. The drink is 57.6% of his daily sugar allowance.

4) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12 Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

4) Changing Ratios: Medium

Solution for Question 3:

$$1:3:5$$
 $1:3+5=1:8$

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

4) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

5) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$y > -4$$

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

5) Inequalities Regions: Medium

2. The region R satisfies the inequalities

$$x \ge 2$$
, $y \ge 1$, $x + y \le 6$

On the grid below, draw straight lines and use shading to show the region R.

5) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$
,

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

GREAVES Will

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: GR91882, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Index Notation. Mathswatch Clip: 131

Topic 2: Bearings. Mathswatch Clip: 124

Topic 3: Standard Form. Mathswatch Clip: 83

Topic 4: Changing Ratios. Mathswatch Clip: NA

Topic 5: Inequalities Regions. Mathswatch Clip: 198

1) Index Notation: Easier

1.	(a)	Simplify	$m^3 \times m^6$	Campana	W 3+6	>

(b) Simplify
$$\frac{p^8}{p^2}$$
 ρ^{8-2}

(c) Simplify
$$(2n^3)^4$$
 $6 n^{3 \times 4}$

(4 marks)

(2)

2. (a) Simplify
$$m^6 \times m^7$$
 $M^6 + 7$

(b) Simplify
$$x^0$$

(c) Simplify
$$(16y^6)^{\frac{1}{2}}$$

3. (a) Simplify
$$m^5 \div m^3$$

(b) Simplify
$$5x^4y^3 \times x^2y$$

$$5 \times 4^{+2}y^{3+1}$$

$$5x^6y^4$$

1) Index Notation: Medium

4. (a) Simplify
$$a^4 \times a^5$$

Simplify (b)

$$\frac{45e^{6}f^{8}}{5ef^{2}}$$

 $\frac{45e^{6}f^{8}}{5ef^{2}}$ 9e⁶⁻¹ F ⁸⁻²

Write down the value of $9^{\frac{1}{2}}$ (c)

(1)

(4 marks)

$$m^2 \times m^4 \,$$

(b) Simplify

 $(m^3)^5$

(c)

Simplify

(4 marks)

6. Simplify fully

(a)
$$p^2 \times p^7$$

$$\frac{3q^4 \times 2q^5}{q^3}$$

$$(3x2)q^{4+5} = 6q^{9-3}$$

 $(2xy^3)^5$ (c)

$$2^{5} \times y^{3} \times 5$$

1) Index Notation: Harder

20. (a) Find the value of

(ii)
$$64^{\frac{1}{2}}$$
 $\sqrt{64}$

(iii)
$$64^{-\frac{2}{3}} = \frac{1}{64^{\frac{7}{3}}}$$

$$= (\sqrt[3]{64})^2 = \frac{1}{4^2}$$

2) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

2) Bearings: Medium

3.

(b) On the diagram, draw a line on a bearing of 107° from A.

clockwise

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

On the map R is 6 cm from Q.

(b) Mark the position of R with a cross (×) and label it R.

(2)

2) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

3) Standard Form: Easier

1. (a) Write the number 0.00037 in standard form.

()

- 3.7×10⁴
- (b) Write $8.25 \times 10^{\frac{3}{3}}$ as an ordinary number.

(1)

- 8250
- (c) Work out $(2.1 \times 10^8) \times (6 \times 10^{-5})$. Write your answer in standard form.

$$2.1 \times 10^{8} \times 6 \times 10^{-5}$$

$$= 12.6 \times 10^{3}$$

$$= 1.26 \times 10^{4}$$

1.26×10⁴ (2)

(4 marks)

2. (a) Write 6.43×10^5 as an ordinary number.

643000

(1)

(b) Work out the value of $2 \times 10^7 \times 8 \times 10^{-12}$ Give your answer in standard form.

$$2 \times 10^{7} \times 8 \times 10^{-12}$$

$$= 16 \times 10^{-5}$$

$$= 1.6 \times 10^{-4}$$

1.6×10-4

(2)

(3 marks)

3) Standard Form: Medium

(b) Write 6.7×10^{-5} as an ordinary number.

0.000067

(c) Work out the value of $(3 \times 10^7) \times (9 \times 10^6)$ Give your answer in standard form.

> $3 \times 10^{7} \times 9 \times 10^{6}$ = 27×10^{13} = 2.7×10^{14}

> > 2.7 × 10¹⁴

(4 marks)

4. (a) Write 8.2×10^5 as an ordinary number.

82000

(b) Write 0.000 376 in standard form.

3.76 ×10⁻⁴

(c) Work out the value of $(2.3 \times 10^{12}) \div (4.6 \times 10^{3})$ Give your answer in standard form.

 $\frac{2.3 \times 10^{12}}{4.6 \times 10^3} = 0.5 \times 10^9$ $= 5 \times 10^8$

 5×10^8 (2)

(4 marks)

3) Standard Form: Harder

Worded Standard Form

1) The world's smallest snail travels 4×10^{-3} m a month. How many months would it take for the snail to travel? 2×10^{-1} m?

2)

The time taken for light to reach Earth from the edge of the known universe is 14 000 000 000 years.

Light travels at the speed of 9.46×10^{12} km/year.

Work out the distance, in kilometres, from the edge of the known universe to Earth. Give your answer in standard form.

$$S = \frac{D}{T}$$

$$D = 9.46 \times 10^{12} \times 1.4 \times 10^{10}$$

$$= 13.244 \times 10^{22}$$

$$= 1.3244 \times 10^{23}$$

4) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

4) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

4) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

5) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

5) Inequalities Regions: Medium

2. The region R satisfies the inequalities

$$x \ge 2$$
, $y \ge 1$, $x + y \le 6$

On the grid below, draw straight lines and use shading to show the region R.

5) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

GREGG Samuel

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: GR91883, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Missing Mean Questions. Mathswatch Clip: NA

Topic 2: Inequalities Regions. Mathswatch Clip: 198

Topic 3: Proof. Mathswatch Clip: 193

Topic 4: Proof with vectors. Mathswatch Clip: 219

Topic 5: Extention1. Mathswatch Clip:

1) Missing Mean Questions: Easier

1) Missing Mean Questions: Medium

1) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

$$28 \times 10 = 280$$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

2) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad x < 2 \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

2) Inequalities Regions: Medium

6. (a) On the grid below, draw straight lines and use shading to show the region \mathbb{R} that satisfies the inequalities

The point P with coordinates (x, y) lies inside the region \mathbb{R} . x and y are **integers**.

(b) Write down the coordinates of **all** the points of \mathbb{R} whose coordinates are both integers.

2) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$
,

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

3) Proof: Easier

1. The nth even number is 2n.

The next even number after 2n is 2n + 2

(a) Explain why.

(b) Write down an expression, in terms of n, for the next even number after 2n+2

$$2n+2+2=2n+4$$
 $2n+4$
(1)

(c) Show algebraically that the sum of any 3 consecutive even numbers is always a multiple of 6

$$2n + 2n+2 + 2n+4$$
= $6n + 6$
= $6(n+1)$

A multiple of 6.

3) Proof: Medium

8. Prove that

 $(n+1)^2 - (n-1)^2 + 1$ is always odd for all positive integer values of n.

$$(n+1)^2 = n^2 + 2n + 1$$

 $(n-1)^2 = n^2 - 2n + 1$

$$(n+1)^{2} - (n-1)^{2} + 1 = (n^{2} + 2n + 1) - (n^{2} - 2n + 1) + 1$$
$$= n^{2} + 2n + 1 - n^{2} + 2n - 1 + 1$$
$$= 4n + 1$$

Len is a multiple of 4 so it must be even which means 4n+1 is odd.

9. Prove algebraically that the sum of the squares of any two consecutive numbers always leaves a remainder of 1 when divided by 4.

consecutive numbers are n and n+1
$$n^{2} + (n+1)^{2}$$

$$= n^{2} + n^{2} + 2n + 1$$

$$= 2n^{2} + 2n + 1$$

$$= 2n(n+1) + 1$$

n(n+i) is the product of 2 consecutive numbers. As one of them is even the product must be even.

2n(n+i) is 2 x an even number which has to be a multiple of 4

So 2n(n+1)+1 is a multiple of 4 plus 1 and well leave a remainder of 1 when divided by 4

4) Proof with vectors: Easier

1.

ABCDEF is a regular hexagon, with centre O.

$$\overrightarrow{OA} = \mathbf{a}$$
, $\overrightarrow{OB} = \mathbf{b}$.

(a) Write the vector \overrightarrow{AB} in terms of a and b.

The line AB is extended to the point K so that AB: BK = 1:2

(b) Write the vector \overrightarrow{CK} in terms of a and b. Give your answer in its simplest form.

$$\overrightarrow{AB} = -a + b$$
 $\overrightarrow{BR} = -2a + 2b$
 $\overrightarrow{CR} = -a + 2b$

-a+2b

4) Proof with vectors: Medium

6.

Diagram NOT accurately drawn

OPQ is a triangle.

R is the midpoint of OP.

S is the midpoint of PQ.

$$\overrightarrow{OP} = p$$
 and $\overrightarrow{OQ} = q$

PQ = -P+9 P3=->P+29

(i) Find \overrightarrow{OS} in terms of p and q.

(ii) Show that RS is parallel to
$$OQ$$
.

 $\overrightarrow{os} = \frac{1}{2}(0+q)$

$$\overrightarrow{RP} = \frac{1}{2}p$$

$$\overrightarrow{RS} = \frac{1}{2}p - \frac{1}{2}p + \frac{1}{2}q$$

$$= \frac{1}{2}q$$

$$\therefore As \overrightarrow{CQ} = q \overrightarrow{RS} \text{ is parallel}$$

4) Proof with vectors: Harder

6.

OAB is a triangle.

$$\overrightarrow{OA} = 2\mathbf{a}$$

$$\overrightarrow{OB} = 3\mathbf{b}$$

(a) Find AB in terms of a and b.

$$\overline{AB} = -2\alpha + 3b \tag{1}$$

P is the point on AB such that AP : PB = 2 : 3

(b) Show that \overrightarrow{OP} is parallel to the vector $\mathbf{a} + \mathbf{b}$.

$$AP = \frac{2}{5}(-2a+3b)$$
= $-\frac{4}{5}a + \frac{6}{5}b$
= $\frac{2}{5}a - \frac{4}{5}a + \frac{6}{5}b$
= $\frac{6}{5}a + \frac{6}{5}b$
= $\frac{6}{5}(a+b)$

(3)

(4 marks)

5) Extention1: Easier

1. The figure below shows a probability tree diagram for two events. What is the value of x and y?

From tree diagram (branches sum to one)

$$2x + 3y = 1$$

$$3x + \frac{2}{3}y = 1$$

Multiplying equations to eliminate x

$$6x + 9y = 3$$

$$6x + \frac{4}{3}y = 2$$

$$\frac{23}{3}y = 1$$

$$y = \frac{3}{23}$$

$$2x + \frac{9}{23} = 1$$

$$x = \frac{7}{23}$$

5) Extention1: Medium

2. Given that $x^a = \frac{1}{x^b}$, What is the value of 2a + 2b?

$$x^a = x^{-b}$$

$$a = -b$$

$$a + b = 0$$

$$2(a+b)=0$$

$$2a + 2b = 0$$

5) Extention1: Harder

3. The two trapezia below are similar. The area of trapezium A is 35cm². Find the perimeter of trapezium B.

The area of trapezium A is given by

$$\frac{1}{2}(x+1+x+3)\times x$$

$$\frac{1}{2}(2x+4) \times x = 35cm^2$$

$$x^2 + 2x = 35cm^2$$

$$x^2 + 2x - 35 = 0$$

$$(x-5)(x+7)=0$$

$$x = 5cm, \qquad (as \ x > 0)$$

The perimeter of Trapezium A is

$$2x + 6 + 2x + 2 + 4\sqrt{26}$$

When
$$x = 5$$

$$4(5) + 8 + 4\sqrt{26}$$

$$= 18 + 4\sqrt{26}$$

GRIFFIN Joshua

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: GR91884, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Bearings. Mathswatch Clip: 124

Topic 2: Solving Quadratics Using the Formula. MW: 191

Topic 3: Venn diagrams.. Mathswatch Clip: 127

Topic 4: Inequalities Regions. Mathswatch Clip: 198

Topic 5: More Difficult Rearranging Formulae. MW: 190

1) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

1) Bearings: Medium

3.

(b) On the diagram, draw a line on a bearing of 107° from A.

clockwise

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

(b) Mark the position of R with a cross (×) and label it R.

(2)

1) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

2) Solving Quadratics Using the Formula: Easier

1. Solve
$$3x^2 + 7x - 13 = 0$$

Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b + \sqrt{b^2 - 4ac}$$

$$= -7 + \sqrt{7^2 - 4x^3x - 13} = -7 + \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$=-6\pm\sqrt{796}$$

$$x = 5.55$$
 or $x = -8.55$

GRIFFIN Joshua, Page 101 /480

2) Solving Quadratics Using the Formula: Medium

3. Solve $x^2 + 3x - 5 = 0$ Give your solutions correct to 4 significant figures.

$$\alpha = 1 \quad b = 3 \quad c = -5$$

$$\alpha = -b \pm \sqrt{b^2 - 4ac}$$

$$= -3 \pm \sqrt{9 - (4x \times 1x - 5)}$$

$$= -3 \pm \sqrt{29}$$

$$= -3 \pm \sqrt{29}$$

$$\alpha = 1.192582404 \text{ or } -4.192582404$$

$$x = 1.193$$
 or -4.193

(3 marks)

4. Solve this quadratic equation.

$$x^2 - 5x - 8 = 0$$

Give your answers correct to 3 significant figures.

$$\alpha = 1 \quad b = -5 \quad c = -8$$

$$\alpha = \frac{5 \pm \sqrt{25 - (4x + 1x - 8)}}{2}$$

$$= \frac{5 \pm \sqrt{57}}{2}$$

$$\alpha = 6.274917218 \quad \text{or } -1.274917218$$

$$x = \frac{6}{\text{GRIFFIN Joshua; Page 102}}$$
 $\frac{2}{\text{Joshua; Page 102}}$

2) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x \qquad = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$
18
$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = 4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

1.38 cm

3) Venn diagrams.: Easier

Solution for Question 1:

Number of people that owned dogs only: 64 - 34 = 30

Number of people that owned cats only: 80 - 34 - 30 = 16

Solution for Question 2:

- a) Number of people that only had a black pen: 60 37 18 = 5
- b) Probability of a person owning both types of pen:

$$\frac{18}{60} = \frac{3}{10}$$

3) Venn diagrams.: Medium

Solution for Question 3:

Solution for Question 4:

a) Tea: 6 + 12 = 18Coffee: 9 + 12 = 21

Therefore, False

- b) False
- c) False

Solution for Question 5:

a) i) $A \cap B = A \text{ and } B = \{9,15\}$

ii) A U B = A or B = $\{3,5,6,12,18\}$

3) Venn diagrams.: Harder

Solution for Question 6:

Number of people who replied with cats only:

$$b-a-4$$

4) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

4) Inequalities Regions: Medium

2. The region R satisfies the inequalities

$$x \ge 2$$
, $y \ge 1$, $x + y \le 6$

On the grid below, draw straight lines and use shading to show the region R.

4) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$
,

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

5) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$2 = d + ac$$

$$a$$

$$q = \frac{\partial}{\partial t} + ac$$
(3)
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$m + 21 = 5n$$
 $n = m + 21$

5) More Difficult Rearranging Formulae: Medium

(b) Make
$$p$$
 the subject of the formula $4(p-2q) = 3p + 2$

$$\rho = \dots$$
 (3)

(Total 5 marks)

$$P = \pi r + 2r + 2a$$

the subject of the formula Make

$$P - 2a = r(TT + 2)$$
 $r = P - 2a$
 $TT + 2$

5) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fu = uv$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$fv$$

GROCH Anna

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: GR91885, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Bearings. Mathswatch Clip: 124

Topic 2: Solving Quadratics Using the Formula. MW: 191

Topic 3: Inequalities Regions. Mathswatch Clip: 198

Topic 4: Pythagoras. Mathswatch Clip: 150

Topic 5: Proof. Mathswatch Clip: 193

1) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

1) Bearings: Medium

3.

(b) On the diagram, draw a line on a bearing of 107° from A.

clockwise

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

(b) Mark the position of R with a cross (×) and label it R.

GROCH Anna, Page 115/480

(2)

(3 marks)

1) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

2) Solving Quadratics Using the Formula: Easier

Solve $3x^2 + 7x - 13 = 0$ amen's Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b \pm \sqrt{b^2 - 4ac}$$

$$= -7 \pm \sqrt{7^2 - 4x3x - 13} = -7 \pm \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$=-6\pm\sqrt{796}$$

$$x = 6.55$$
 or $x = -8.55$

2) Solving Quadratics Using the Formula: Medium

3. Solve $x^2 + 3x - 5 = 0$ Give your solutions correct to 4 significant figures.

$$\alpha = 1 \quad b = 3 \quad c = -5$$

$$\alpha = -b \pm \sqrt{b^2 - 4ac}$$

$$= -3 \pm \sqrt{9 - (4x \times 1x - 5)}$$

$$= -3 \pm \sqrt{29}$$

$$= -3 \pm \sqrt{29}$$

$$\alpha = 1.192582404 \text{ or } -4.192582404$$

$$x = 1.193$$
 or -4.193

(3 marks)

4. Solve this quadratic equation.

$$x^2 - 5x - 8 = 0$$

Give your answers correct to 3 significant figures.

$$\alpha = 1 \quad b = -5 \quad c = -8$$

$$\alpha = \frac{5 \pm \sqrt{25 - (4x + 1x - 8)}}{2}$$

$$= \frac{5 \pm \sqrt{57}}{2}$$

$$\alpha = 6.274917218 \quad \text{or } -1.274917218$$

$$x = ... 6$$
 GROCH Anna; Page 118 $\%$ = ... 1 . 2 $\%$

2) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x \qquad = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$
18
$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = .4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

3) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

3) Inequalities Regions: Medium

2. The region R satisfies the inequalities

$$x \ge 2$$
, $y \ge 1$, $x + y \le 6$

On the grid below, draw straight lines and use shading to show the region R.

3) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$
,

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

4) Pythagoras: Easier

1.

Diagram NOT accurately drawn

PQR is a right-angled triangle.

PQ = 16 cm.

PR = 8 cm.

Calculate the length of QR.

Give your answer correct to 2 decimal places.

$$QR^2 = 16^2 - 8^2 = 192$$

$$QR = \sqrt{192} = 13.86 \ cm$$

....13.86.... cm

(3 marks)

2.

Diagram NOT accurately drawn

XYZ is a right-angled triangle.

XY = 3.2 cm.

XZ = 1.7 cm.

Calculate the length of YZ.

Give your answer correct to 3 significant figures.

$$YZ^2 = 3.2^2 + 1.7^2 = 13.13$$

$$YZ = \sqrt{13.13} = 3.62 \ cm$$

GROCH Anna, Page 123 /480

4) Pythagoras: Medium

3.

ABC is a right-angled triangle.

$$AB = 8 \text{ cm},$$

 $BC = 11 \text{ cm}.$

Calculate the length of \mathcal{AC} .

Give your answer correct to 3 significant figures.

$$AC^2 = 8^2 + 11^2 = 185$$

$$AC = \sqrt{185} = 13.6 \ cm$$

.....cm (3 marks)

4.

Angle *MLN* = 90°. *LM* = 3.7 m. *MN* = 6.3 m.

Work out the length of LN.

Give your answer correct to 3 significant figures.

$$LN^2 = 6.3^2 - 3.7^2 = 26$$

$$LN = \sqrt{26} = 5.10 m$$

GROCH Anna, Page 124 /480

4) Pythagoras: Harder

13. ABCD is a trapezium.

Diagram NOT accurately drawn

AD = 10 cmAB = 9 cmDC = 3 cmAngle ABC = angle BCD = 90°

Calculate the length of AC. Give your answer correct to 3 significant figures.

14. A ladder is 6 m long.

The ladder is placed on horizontal ground, resting against a vertical wall.

The instructions for using the ladder say that the bottom of the ladder must not be closer than 1.5 m from the bottom of the wall.

How far up the wall can the ladder reach? Give your answer correct to 1 decimal place.

$$h^2 = 6^2 - 1.5^2 = 33.75$$

 $h = \sqrt{33.75} = 5.8 m$

GROCH Anna, Page 125 /480

5.8

1. The nth even number is 2n.

The next even number after 2n is 2n + 2

(a) Explain why.

(b) Write down an expression, in terms of n, for the next even number after 2n+2

$$2n+2+2=2n+4$$
 $2n+4$ (1)

(c) Show algebraically that the sum of any 3 consecutive even numbers is always a multiple of 6

$$2n + 2n+2 + 2n+4$$
= $6n + 6$
= $6(n+1)$

A multiple of 6.

5) Proof: Medium

2. Prove that $(3n+1)^2 - (3n-1)^2$ is a multiple of 4, for all positive integer values of n.

$$(3n+i)^{2} - (3n-i)^{2}$$

$$(3n+i)^{2} = (3n+i)(3n+i)$$

$$= 9n^{2} + 6n + 1$$

$$(3n-i)^{2} = (3n-i)(3n-i)$$

$$= 9n^{2} - 6n + 1$$

$$(3n+1)^{2} - (3n+1)^{2} = (9n^{2}+bn+1) - (9n^{2}-bn+1)$$

$$= 9n^{2}+bn+1 - 9n^{2}+bn-1$$

$$= 12n$$

$$= 4(3n)$$

Much is a multiple of 4

9. Prove algebraically that the sum of the squares of any two consecutive numbers always leaves a remainder of 1 when divided by 4.

consecutive numbers are n and n+1
$$n^{2} + (n+1)^{2}$$

$$= n^{2} + n^{2} + 2n + 1$$

$$= 2n^{2} + 2n + 1$$

$$= 2n(n+1) + 1$$

n(n+1) is the product of 2 consecutive numbers. As one of them is even the product must be even.

2n(n+i) is 2 x answer number which has to be a multiple of 4

So 2n(n+1)+1 is a multiple of 4 plus 1 and well leave a remainder of 1 when divided by 4

HATCHELL Charlie

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: HA91886, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Changing Ratios. Mathswatch Clip: NA

Topic 2: Solving Quadratics Using the Formula. MW: 191

Topic 3: Venn diagrams.. Mathswatch Clip: 127

Topic 4: More Difficult Rearranging Formulae. MW: 190

Topic 5: Pythagoras. Mathswatch Clip: 150

1) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

1) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51

Compare 2:3 to 10:17, achieving same number for red
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

1) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

2) Solving Quadratics Using the Formula: Easier

Solve $3x^2 + 7x - 13 = 0$ amen's Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b \pm \sqrt{b^2 - 4ac}$$

$$= -7 \pm \sqrt{7^2 - 4x^3x - 13} = -7 \pm \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$

(3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$x = 5.55$$
 or $x = -8.55$

HATCHELL Charlie, Page 133 /480

2) Solving Quadratics Using the Formula: Medium

3. Solve $x^2 + 3x - 5 = 0$ Give your solutions correct to 4 significant figures.

$$\alpha = 1 \quad b = 3 \quad c = -5$$

$$\alpha = -b \pm \sqrt{b^2 - 4ac}$$

$$= -3 \pm \sqrt{9 - (4x \times 1x - 5)}$$

$$= -3 \pm \sqrt{29}$$

$$= -3 \pm \sqrt{29}$$

$$\alpha = 1.192582404 \text{ or } -4.192582404$$

$$x = 1.193$$
 or -4.193

(3 marks)

4. Solve this quadratic equation.

$$x^2 - 5x - 8 = 0$$

Give your answers correct to 3 significant figures.

$$\alpha = 1 \quad b = -5 \quad c = -8$$

$$\alpha = \frac{5 \pm \sqrt{25 - (4 \times 1 \times - 8)}}{2}$$

$$= \frac{5 \pm \sqrt{57}}{2}$$

$$\alpha = 6.274917218 \quad \text{or } -1.274917218$$

2) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x \qquad = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$
18
$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = 4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

1.38 cm

3) Venn diagrams.: Easier

Solution for Question 1:

Number of people that owned dogs only: 64 - 34 = 30

Number of people that owned cats only: 80 - 34 - 30 = 16

Solution for Question 2:

- a) Number of people that only had a black pen: 60 37 18 = 5
- b) Probability of a person owning both types of pen:

$$\frac{18}{60} = \frac{3}{10}$$

3) Venn diagrams.: Medium

Solution for Question 3:

Solution for Question 4:

a) Tea: 6 + 12 = 18Coffee: 9 + 12 = 21Therefore, False

- b) False
- c) False

Solution for Question 5:

a)

i)
$$A \cap B = A \text{ and } B = \{9,15\}$$

ii) A U B = A or B =
$$\{3,5,6,12,18\}$$

3) Venn diagrams.: Harder

Solution for Question 6:

Number of people who replied with cats only:

$$b-a-4$$

4) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$2 = d + ac$$

$$a$$

$$q = \frac{\partial}{\partial t} + \alpha C \tag{3}$$
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$M + 21 = 5M$$
 $M = M + 21$

4) More Difficult Rearranging Formulae: Medium

(b) Make
$$p$$
 the subject of the formula $4(p-2q) = 3p + 2$

$$\rho = \dots$$
 (3)

(Total 5 marks)

$$P = \pi r + 2r + 2a$$

Make r the subject of the formula

HATCHELL Charlie, Page 140 /480

4) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$f_{V} + f_{W} = WV$$

$$f_{U} - uV = fV$$

$$u(f - v) = fV$$

$$u = fV$$

$$u = fV$$

5) Pythagoras: Easier

1.

Diagram NOT accurately drawn

PQR is a right-angled triangle.

PQ = 16 cm.

PR = 8 cm.

Calculate the length of QR.

Give your answer correct to 2 decimal places.

$$QR^2 = 16^2 - 8^2 = 192$$

$$QR = \sqrt{192} = 13.86 \ cm$$

....13.86.... cm

(3 marks)

2.

Diagram NOT accurately drawn

XYZ is a right-angled triangle.

XY = 3.2 cm.

XZ = 1.7 cm.

Calculate the length of YZ.

Give your answer correct to 3 significant figures.

$$YZ^2 = 3.2^2 + 1.7^2 = 13.13$$

$$YZ = \sqrt{13.13} = 3.62 \ cm$$

HATCHELL Charlie, Page 142 /480

5) Pythagoras: Medium

3.

ABC is a right-angled triangle.

$$AB = 8 \text{ cm},$$

 $BC = 11 \text{ cm}.$

Calculate the length of \mathcal{AC} .

Give your answer correct to 3 significant figures.

$$AC^2 = 8^2 + 11^2 = 185$$

$$AC = \sqrt{185} = 13.6 \ cm$$

4.

Angle *MLN* = 90°. *LM* = 3.7 m. *MN* = 6.3 m.

Work out the length of LN.

Give your answer correct to 3 significant figures.

$$LN^2 = 6.3^2 - 3.7^2 = 26$$

$$LN = \sqrt{26} = 5.10 m$$

HATCHELL Charlie, Page 143 /480

5) Pythagoras: Harder

13. ABCD is a trapezium.

Diagram NOT accurately drawn

AD = 10 cm AB = 9 cm DC = 3 cm Angle ABC = angle BCD = 90°

Calculate the length of *AC*. Give your answer correct to 3 significant figures.

$$AP = 9 - 3 = 6 cm$$

 $PD^2 = 10^2 - 6^2 = 64$
 $BC = PD = \sqrt{64} = 8 cm$
 $AC^2 = 9^2 + 8^2 = 145$
 $AC = \sqrt{145} = 12.0$ cm

14. A ladder is 6 m long.

The ladder is placed on horizontal ground, resting against a vertical wall.

The instructions for using the ladder say that the bottom of the ladder must not be closer than 1.5 m from the bottom of the wall.

How far up the wall can the ladder reach? Give your answer correct to 1 decimal place.

$$h^2 = 6^2 - 1.5^2 = 33.75$$

 $h = \sqrt{33.75} = 5.8 m$

HATCHELL Charlie, Page 144 /480

5.8

..... n

(5 marks)

HAYES Benjamin

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: HA91887, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Bearings. Mathswatch Clip: 124

Topic 2: Missing Mean Questions. Mathswatch Clip: NA

Topic 3: Changing Ratios. Mathswatch Clip: NA

Topic 4: Inequalities Regions. Mathswatch Clip: 198

Topic 5: More Difficult Rearranging Formulae. MW: 190

1) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

1) Bearings: Medium

9. The bearing of a ship from a lighthouse is 050°

Work out the bearing of the lighthouse from the ship.

DRAW A SKETCH!

If accurate, you can
measure the bearing

230

(2 marks)

1) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

2) Missing Mean Questions: Easier

2) Missing Mean Questions: Medium

HAVES Benjamin, Page 150 /480

2) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

$$28 \times 10 = 280$$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

PINPOINT

3) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12 Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

PINPOINT

3) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

PINPOINT

3) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

4) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad x < 2 \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

4) Inequalities Regions: Medium

6. (a) On the grid below, draw straight lines and use shading to show the region \mathbb{R} that satisfies the inequalities

The point P with coordinates (x, y) lies inside the region \mathbb{R} . x and y are **integers**.

(b) Write down the coordinates of **all** the points of \mathbb{R} whose coordinates are both integers.

4) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$
,

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

5) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_{2}-a_{1}=d$$

$$a_{2}=d+a_{1}$$

$$a_{2}=d+a_{2}$$

$$q = \frac{\partial}{\partial t} + ac$$
(3)
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$M + 21 = 5n$$
 $N = M + 21$
 $S = 5n$

5) More Difficult Rearranging Formulae: Medium

10.
$$P = \frac{n^2 + a}{n + a}$$

Rearrange the formula to make a the subject.

$$p(n+a) = n^2 + a$$

$$pn + pa = n^2 + a$$

$$pa - a = n^2$$

$$a(p-1) = n^2$$

$$a = n^2$$

a =.....

(Total 4 marks)

$$\frac{x}{x+c} = \frac{p}{q}$$

Make x the subject of the formula.

$$x = p(x+c)$$

$$y = p(x+c)$$

HAYES Benjamin, Page 159 /480

5) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fu = uv$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$u = fv$$

$$fv$$

HOWELL Zulekha

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: HO91888, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Bearings. Mathswatch Clip: 124

Topic 2: Solving Quadratics Using the Formula. MW: 191

Topic 3: Inequalities Regions. Mathswatch Clip: 198

Topic 4: More Difficult Rearranging Formulae. MW: 190

Topic 5: Pythagoras. Mathswatch Clip: 150

1) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

1) Bearings: Medium

3.

(b) On the diagram, draw a line on a bearing of 107° from A.

clockwise

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

(b) Mark the position of R with a cross (×) and label it R.

(2)

1) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

2) Solving Quadratics Using the Formula: Easier

Solve $3x^2 + 7x - 13 = 0$ amen's Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b + \sqrt{b^2 - 4ac}$$

$$= -7 + \sqrt{7^2 - 4x^3x - 13} = -7 + \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$=-6\pm\sqrt{796}$$

$$x = 5.55$$
 or $x = -8.55$

HOWELL Zulekha, Page 165 /480

2) Solving Quadratics Using the Formula: Medium

3. Solve $x^2 + 3x - 5 = 0$ Give your solutions correct to 4 significant figures.

$$\alpha = 1 \quad b = 3 \quad c = -5$$

$$\alpha = -b \pm \sqrt{b^2 - 4ac}$$

$$= -3 \pm \sqrt{9 - (4x \times 1x - 5)}$$

$$= -3 \pm \sqrt{29}$$

$$= -3 \pm \sqrt{29}$$

$$\alpha = 1.192582404 \text{ or } -4.192582404$$

$$x = 1.193$$
 or -4.193

(3 marks)

4. Solve this quadratic equation.

$$x^2 - 5x - 8 = 0$$

Give your answers correct to 3 significant figures.

$$\alpha = 1 \quad b = -5 \quad c = -8$$

$$\alpha = \frac{5 \pm \sqrt{25 - (4x1x - 8)}}{2}$$

$$= \frac{5 \pm \sqrt{57}}{2}$$

$$\alpha = 6.274917218 \quad \text{or } -1.274917218$$

$$x = 100$$
 Howelt Zulekha; Page $168^{\circ}/480^{\circ}$

2) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x \qquad = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$

$$18$$

$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = .4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

3) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad x < 2 \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

3) Inequalities Regions: Medium

2. The region R satisfies the inequalities

$$x \ge 2$$
, $y \ge 1$, $x + y \le 6$

On the grid below, draw straight lines and use shading to show the region R.

3) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

4) More Difficult Rearranging Formulae: Easier

1. Rearrange
$$a(q-c) = d$$
 to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$2 = d + ac$$

$$a$$

$$q = \frac{\partial}{\partial t} + \alpha C \tag{3}$$
(Total 5 marks)

the subject of the formula m = 5n - 21(a) Make n

$$m=5n-21$$

$$M + 21 = 5H$$
 $M = M + 21$
 $S = \frac{1}{2}$

4) More Difficult Rearranging Formulae: Medium

(b) Make
$$p$$
 the subject of the formula $4(p-2q) = 3p + 2$

$$p = \dots (3)$$

(Total 5 marks)

$$P = \pi r + 2r + 2a$$

Make r the subject of the formula

HOWELL Zulekha, Page 172 /480_

4) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$f_{V} + f_{U} = W$$

$$f_{U} - u_{V} = f_{V}$$

$$u(f - v) = f_{V}$$

$$u = f_{V}$$

$$f_{V}$$

5) Pythagoras: Easier

1.

Diagram NOT accurately drawn

PQR is a right-angled triangle.

PQ = 16 cm.

PR = 8 cm.

Calculate the length of QR.

Give your answer correct to 2 decimal places.

$$QR^2 = 16^2 - 8^2 = 192$$

$$QR = \sqrt{192} = 13.86 \ cm$$

....13.86.... cm

(3 marks)

2.

Diagram NOT accurately drawn

XYZ is a right-angled triangle.

XY = 3.2 cm.

XZ = 1.7 cm.

Calculate the length of YZ.

Give your answer correct to 3 significant figures.

$$YZ^2 = 3.2^2 + 1.7^2 = 13.13$$

$$YZ = \sqrt{13.13} = 3.62 \ cm$$

HOWELL Zulekha, Page 174 /480

5) Pythagoras: Medium

3.

ABC is a right-angled triangle.

$$AB = 8 \text{ cm},$$

 $BC = 11 \text{ cm}.$

Calculate the length of \mathcal{AC} .

Give your answer correct to 3 significant figures.

$$AC^2 = 8^2 + 11^2 = 185$$

$$AC = \sqrt{185} = 13.6 \ cm$$

.....cm (3 marks)

4.

Angle *MLN* = 90°. *LM* = 3.7 m. *MN* = 6.3 m.

Work out the length of LN.

Give your answer correct to 3 significant figures.

$$LN^2 = 6.3^2 - 3.7^2 = 26$$

$$LN = \sqrt{26} = 5.10 m$$

HOWELL Zulekha, Page 175 /480

5) Pythagoras: Harder

13. ABCD is a trapezium.

Diagram NOT accurately drawn

AD = 10 cm AB = 9 cm DC = 3 cm Angle ABC = angle BCD = 90°

Calculate the length of *AC*. Give your answer correct to 3 significant figures.

14. A ladder is 6 m long.

The ladder is placed on horizontal ground, resting against a vertical wall.

The instructions for using the ladder say that the bottom of the ladder must not be closer than 1.5 m from the bottom of the wall.

How far up the wall can the ladder reach? Give your answer correct to 1 decimal place.

$$h^2 = 6^2 - 1.5^2 = 33.75$$

 $h = \sqrt{33.75} = 5.8 m$

HOWELL Zulekha, Page 176 /480

5.8

..... m

HUGHES Mia

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: HU91889, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Missing Mean Questions. Mathswatch Clip: NA

Topic 2: More Difficult Rearranging Formulae. MW: 190

Topic 3: Pythagoras. Mathswatch Clip: 150

Topic 4: Proof. Mathswatch Clip: 193

Topic 5: Proof with vectors. Mathswatch Clip: 219

1) Missing Mean Questions: Easier

1) Missing Mean Questions: Medium

HUGHES Mia, Page 179 /480

1) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

 $28 \times 10 = 280$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

2) More Difficult Rearranging Formulae: Easier

1. Rearrange
$$a(q-c) = d$$
 to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$2 = d + ac$$

$$a$$

$$q = \frac{\partial}{\partial t} + ac$$
(3)
(Total 5 marks)

the subject of the formula m = 5n - 21(a) Make n

$$m = 5n - 21$$

$$M + 21 = 5H$$
 $M = 11 = 11$

2) More Difficult Rearranging Formulae: Medium

10.
$$P = \frac{n^2 + a}{n + a}$$

Rearrange the formula to make *a* the subject.

$$p(n+a) = n^2 + a$$

$$pn + pa = n^2 + a$$

$$pa = a = n^2$$

$$a(p-1) = n^2$$

$$a = n^2$$

(Total 4 marks)

$$\frac{x}{x+c} = \frac{p}{q}$$

the subject of the formula. Make *x*

$$x = p(x+c)$$

$$y = p(x+c)$$

(Total 4 marks)

2) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fu = uv$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$u = fv$$

$$fv$$

3) Pythagoras: Easier

1.

Diagram NOT accurately drawn

PQR is a right-angled triangle.

PQ = 16 cm.

PR = 8 cm.

Calculate the length of QR.

Give your answer correct to 2 decimal places.

$$QR^2 = 16^2 - 8^2 = 192$$

$$QR = \sqrt{192} = 13.86 \ cm$$

....13.86.... cm

(3 marks)

2.

Diagram NOT accurately drawn

XYZ is a right-angled triangle.

XY = 3.2 cm.

XZ = 1.7 cm.

Calculate the length of YZ.

Give your answer correct to 3 significant figures.

$$YZ^2 = 3.2^2 + 1.7^2 = 13.13$$

$$YZ = \sqrt{13.13} = 3.62 \ cm$$

HUGHES Mia, Page 184 /480

3) Pythagoras: Medium

7.

old version answers:

Q11 22.4 cm

Q12 11.9cm

Diagram NOT accurately drawn

A rectangular television screen has a width of 45 cm and a height of 34 cm.

Work out the length of the diagonal of the screen. Give your answer correct to the nearest centimetre.

$$x^2 = 45^2 + 34^2 = 3181$$
$$x = \sqrt{3181} = 56 \text{ cm}$$

.....cm (4 marks)

8.

Diagram NOT accurately drawn

Work out the length, in centimetres, of *AM*. Give your answer correct to 2 decimal places.

$$BM = \frac{1}{2}BC = 4 \ cm$$

$$AM^2 = 7^2 - 4^2 = 33$$
 GHES Mia, Page 185/480

5.74 cm

3) Pythagoras: Harder

13. ABCD is a trapezium.

Diagram NOT accurately drawn

AD = 10 cmAB = 9 cmDC = 3 cmAngle ABC = angle BCD = 90°

Calculate the length of AC. Give your answer correct to 3 significant figures.

$$AP = 9 - 3 = 6 cm$$
 $PD^2 = 10^2 - 6^2 = 64$
 $BC = PD = \sqrt{64} = 8 cm$
 $AC^2 = 9^2 + 8^2 = 145$
 $AC = \sqrt{145} = 12.0$ cm
(5 marks)

14. A ladder is 6 m long.

The ladder is placed on horizontal ground, resting against a vertical wall.

The instructions for using the ladder say that the bottom of the ladder must not be closer than 1.5 m from the bottom of the wall.

How far up the wall can the ladder reach? Give your answer correct to 1 decimal place.

$$h^2 = 6^2 - 1.5^2 = 33.75$$

 $h = \sqrt{33.75} = 5.8 m$

HUGHES Mia, Page 186 /480

5.8

1. The nth even number is 2n.

The next even number after 2n is 2n + 2

(a) Explain why.

(b) Write down an expression, in terms of n, for the next even number after 2n+2

$$2n+2+2=2n+4$$
 $2n+4$ (1)

(c) Show algebraically that the sum of any 3 consecutive even numbers is always a multiple of 6

$$2n + 2n+2 + 2n+4$$
= $6n + 6$
= $6(n+1)$

A multiple of 6.

4) Proof: Medium

8. Prove that

 $(n+1)^2 - (n-1)^2 + 1$ is always odd for all positive integer values of n.

$$(n+1)^2 = n^2 + 2n + 1$$
$$(n-1)^2 = n^2 - 2n + 1$$

$$(n+1)^{2} - (n-1)^{2} + 1 = (n^{2} + 2n + 1) - (n^{2} - 2n + 1) + 1$$
$$= n^{2} + 2n + 1 - n^{2} + 2n - 1 + 1$$
$$= 4n + 1$$

Len is a multiple of 4 so it must be even which means 4n+1 is odd.

9. Prove algebraically that the sum of the squares of any two consecutive numbers always leaves a remainder of 1 when divided by 4.

consecutive numbers are n and n+1
$$n^{2} + (n+1)^{2}$$

$$= n^{2} + n^{2} + 2n + 1$$

$$= 2n^{2} + 2n + 1$$

$$= 2n(n+1) + 1$$

n(n+1) is the product of 2 consecutive numbers. As one of them is even the product must be even.

2n(n+i) is 2 x anever number which has to be a multiple of 4

So 2n(n+1)+1 is a multiple of 4 plus 1 and well leave a remainder of 1 when divided by 4

5) Proof with vectors: Easier

1.

ABCDEF is a regular hexagon, with centre O.

$$\overrightarrow{OA} = \mathbf{a}$$
, $\overrightarrow{OB} = \mathbf{b}$.

(a) Write the vector \overrightarrow{AB} in terms of a and b.

The line AB is extended to the point K so that AB : BK = 1 : 2

(b) Write the vector \overrightarrow{CK} in terms of a and b. Give your answer in its simplest form.

$$\overrightarrow{AB} = -a + b$$
 $\overrightarrow{BR} = -2a + 2b$
 $\overrightarrow{CR} = -a + 2b$

-a+2b

(4 marks)

5) Proof with vectors: Medium

6.

Diagram NOT accurately drawn

OPQ is a triangle.

R is the midpoint of OP.

S is the midpoint of PQ.

$$\overrightarrow{OP} = p$$
 and $\overrightarrow{OQ} = q$

(i) Find \overrightarrow{OS} in terms of p and q.

(ii) Show that RS is parallel to
$$OQ$$
.

 $\overrightarrow{os} = \frac{1}{2}(0+q)$

$$\overrightarrow{RP} = \frac{1}{2}p$$

$$\overrightarrow{RS} = \frac{1}{2}p - \frac{1}{2}p + \frac{1}{2}q$$

$$= \frac{1}{2}q$$

$$\therefore As \overrightarrow{CQ} = q \overrightarrow{RS} \text{ is parallel}$$

5) Proof with vectors: Harder

6.

OAB is a triangle.

$$\overrightarrow{OA} = 2\mathbf{a}$$

$$\overrightarrow{OB} = 3\mathbf{b}$$

(a) Find AB in terms of a and b.

$$\overline{AB} = -2\alpha + 3b \tag{1}$$

P is the point on AB such that AP : PB = 2 : 3

(b) Show that \overrightarrow{OP} is parallel to the vector $\mathbf{a} + \mathbf{b}$.

$$AP = \frac{2}{5}(-2a+3b)$$
= $-\frac{4}{5}a + \frac{6}{5}b$
= $\frac{2}{5}a - \frac{4}{5}a + \frac{6}{5}b$
= $\frac{6}{5}a + \frac{6}{5}b$
= $\frac{6}{5}(a+b)$

(3)

(4 marks)

JAMES-KEEP India

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: JA91890, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Angles in Polygons. Mathswatch Clip: 123

Topic 2: Bearings. Mathswatch Clip: 124

Topic 3: Simple Bounds. Mathswatch Clip: 132

Topic 4: Standard Form. Mathswatch Clip: 83

Topic 5: More Difficult Rearranging Formulae. MW: 190

1) Angles in Polygons: Easier

1. Each exterior angle of a regular polygon is 30°.

Work out the number of sides of the polygon.

(2 marks)

2.

Diagram **NOT** accurately drawn

Work out the size of an exterior angle of a regular pentagon.

72 .

(2 marks)

3.

Diagram **NOT** accurately drawn

Calculate the size of the exterior angle of a regular hexagon.

1) Angles in Polygons: Medium

4. The size of each exterior angle of a regular polygon is 40°.

Work out the number of sides of the regular polygon.

9		
	18	* \
	(2	marks)

5. The size of each interior angle of a regular polygon is 156°. Work out the number of sides of the polygon.

$$180 - 156 = 24$$
 (Extenor angle)
 $360 - 24 = 15$

6. Here is a regular polygon with 9 sides.

Diagram NOT accurately drawn

Work out the size of an exterior angle.

1) Angles in Polygons: Harder

11.

Diagram **NOT** accurately drawn

ABCDE and EHJKL are regular pentagons. AEL is an equilateral triangle.

Work out the size of angle DEH.

Pentagon:
$$\frac{180 \times (n-2)}{n}$$

= $\frac{180 \times 3}{5} = \frac{540}{5} = 108$

84 (4 marks)

2) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

2) Bearings: Medium

3.

(b) On the diagram, draw a line on a bearing of 107° from A.

clockwise

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

(b) Mark the position of R with a cross (×) and label it R.

JAMES-KEEP India, Page 198 /480

(2)

(3 marks)

2) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

3) Simple Bounds: Easier

 A piece of string has (a) Write down the sl 	a length of 55 mm to the nortest possible length of			
(b) Write down th	e greatest possible len	gth of the piece of str	<u>54.5</u> ing.	mm (1)
		_	<u>55.5</u>	mm (1) (2 marks)
	58 cm to the nearest cr			
	•	_	<u>157.5</u>	cm
(b) Write down Che	lsea's maximum possib	le height.		(1).
		;	<u>158.5</u>	cm (1) (2 marks)

3) Simple Bounds: Medium

3. A is 4.2 correct to the nearest decimal place. B is 13 correct to the nearest whole number. a) What is the error interval for A? $4.15 \le A < 4.25$ b) What is the lower bound of B? 12.5 cm (1) c) What is the error interval of A + B? Lower bound A+B 4.15 + 12.5 = 16.65 Upper bound A+B 4.25 + 13.5 = 17.75 $16.65 \le A + B < 17.75$

(1)

cm

3) Simple Bounds: Harder

4.

The sides of the rectangle above are measured to the nearest cm.

a) Work out a lower bound for the perimeter.

Lower bounds for the sides are 4.5cm and 7.5cm So lower bounds for perimeter is $2\times4.5+2\times7.5=9+15=24cm$

<u>24cm</u>

b) Work out the upper bound for the perimeter.

Upper bounds for the sides are 5.5cm and 8.5cm So lower bounds for perimeter is $2 \times 5.5 + 2 \times 8.5 = 11 + 17 = 28cm$

<u>28cm</u> (4 marks)

5. Tom has 100 identical pens.

Each of these pen weighs 5 grams to the nearest gram.

Work out the greatest possible total weight of all 100 pens. Give your answer in kilograms.

Upper bound for weight of one pen: 5.5 g

So for 100 pens upper bound is $100 \times 5.5 = 550g$

One kilogram = 1000 grams so

550g = 0.55kg

JAMES-KEEP India, Page 202 /480 kg

(3 marks)

4) Standard Form: Easier

1. (a) Write the number 0.00037 in standard form.

James C

- 3.7×10⁴
- (b) Write $8.25 \times 10^{\frac{3}{3}}$ as an ordinary number.

(1)

- 8250
- (c) Work out $(2.1 \times 10^8) \times (6 \times 10^{-5})$. Write your answer in standard form.

$$2.1 \times 10^{8} \times 6 \times 10^{-5}$$

$$= 12.6 \times 10^{3}$$

$$= 1.26 \times 10^{4}$$

 1.26×10^4 (2)

(4 marks)

2. (a) Write 6.43×10^5 as an ordinary number.

643000

(1)

(b) Work out the value of $2 \times 10^7 \times 8 \times 10^{-12}$ Give your answer in standard form.

$$2 \times 10^{7} \times 8 \times 10^{-12}$$

$$= 16 \times 10^{-5}$$

$$= 1.6 \times 10^{-4}$$

1.6×10-4

(2)

(3 marks)

4) Standard Form: Medium

(1)

(b) Write 6.7×10^{-5} as an ordinary number.

0.000067

(c) Work out the value of $(3 \times 10^7) \times (9 \times 10^6)$ Give your answer in standard form.

$$3 \times 10^{7} \times 9 \times 10^{6}$$

= 27×10^{13}
= 2.7×10^{14}

 $2.7 \times 10^{14} \tag{2}$

(4 marks)

4. (a) Write 8.2×10^5 as an ordinary number.

820000

(b) Write 0.000 376 in standard form.

3.76 ×10⁻⁴

(c) Work out the value of $(2.3 \times 10^{12}) \div (4.6 \times 10^{3})$ Give your answer in standard form.

$$\frac{2.3 \times 10^{12}}{4.6 \times 10^3} = 0.5 \times 10^9$$
$$= 5 \times 10^8$$

5×10⁸ (2)

(4 marks)

4) Standard Form: Harder

Worded Standard Form

1) The world's smallest snail travels 4×10^{-3} m a month. How many months would it take for the snail to travel? 2×10^{-1} m?

2)

The time taken for light to reach Earth from the edge of the known universe is 14 000 000 000 years.

Light travels at the speed of 9.46×10^{12} km/year.

Work out the distance, in kilometres, from the edge of the known universe to Earth. Give your answer in standard form.

$$S = \frac{D}{T}$$

$$D = 9.46 \times 10^{12} \times 1.4 \times 10^{10}$$

$$= 13.244 \times 10^{22}$$

$$= 1.3244 \times 10^{23}$$

5) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$2 = d + ac$$

$$a$$

$$q = \frac{\partial}{\partial t} + ac$$
(3)
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$m + 21 = 5n$$
 $n = m + 21$

5) More Difficult Rearranging Formulae: Medium

(b) Make
$$p$$
 the subject of the formula $4(p-2q) = 3p + 2$

$$\rho = \dots$$
 (3)

$$P = \pi r + 2r + 2a$$

the subject of the formula Make

5) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fu = uv$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$u = fv$$

$$fv$$

JANSON Eleanor

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: JA91891, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Simultaneous Equations. Mathswatch Clip: 162

Topic 2: Changing Ratios. Mathswatch Clip: NA

Topic 3: Venn diagrams.. Mathswatch Clip: 127

Topic 4: Inequalities Regions. Mathswatch Clip: 198

Topic 5: Pythagoras. Mathswatch Clip: 150

1) Simultaneous Equations: Easier

1) Solve the simultaneous equations.

$$2x + 3y = 9$$
$$5x + 3y = 18$$

$$2 - 0$$

$$5 \times + 3y = 18$$

$$2 \times + 3y = 9$$

$$3 \times = \frac{9}{3}$$

$$x = 3$$

Sub
$$3c = 3$$
 into 1

$$2x + 3y = 9$$

$$46 + 3y = 9$$

$$3y = 3$$

$$y = 1$$

$$y = \frac{1}{3}$$
(3 Marks)

2) Solve the simultaneous equations.

$$4x + 2y = 9 \times 2$$

$$8x + 8y = 20$$

$$2 - 3$$

$$8x + 8y = 20$$

$$8x + 4y = 18$$

$$4y = 2$$

$$4 + 4$$

$$4 = 0.5$$

3
$$8x + 4y = 18$$

Sub $y = 0.5$ into (1)
 $4x + 1 = 9$
 $4x = 8$
 $4x = 2$
 $x = 2$
 $y = 0.5$
(4 Marks)

JANSON Eleanor, Page 210 /480

1) Simultaneous Equations: Medium

7) Solve the simultaneous equations.

$$2 + 3$$

$$4 \times -99 = -34$$

$$18 \times +99 = 45 +$$

$$\frac{22x}{22} = \frac{1}{22}$$

$$x = 0.5$$

Sub
$$x = 0.5$$
 into (1)
 $3 + 3y = 15$
 $3y = 12$
 $3y = 12$
 $y = 4$
 $x = \frac{0.5}{y} = \frac{4}{4}$
(4 Marks)

8) Solve the simultaneous equations.

$$20 + 30$$

$$8x - 6y = 51$$

$$15x + 6y = 87 + 4$$

$$23x = 138$$

$$23$$

$$8x-6y=51$$
 $16x+6y=87$
 $5ub = 6 into 1$
 $30+2y=29$
 -30
 -80
 $2y=-1$
 $2y=-0.5$
 $y=-0.5$

JANSON Eleanor, Page 211 /480

5x + 2y = 29 + 3

(4 Marks)

1) Simultaneous Equations: Harder

9) Bill goes into a chip shop and buys 3 fish and 2 portions of chips, it cost him £5.20

Jenny also goes into the same chip shop. She buys **5 fish** and **6 portions of chips,** it cost her £10.80

10) There are some ducks and some sheep on a farm. Altogether they have 35 heads and 94 feet.

How many ducks and sheep are there?

(a)
$$2d + 5 = 35$$
 (heads) $\times 2$

(b) $2d + 4s = 94$ (feet)

(c) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(d) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(e) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(feet)

(feet)

(g) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $5 = 12$ into (feet)

PINPOINT

2) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

PINPOINT

2) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

PINPOINT

2) Changing Ratios: Harder

Solution for Question 6:

Sedimentary : Metamorphic = 2:3 Metamorphic : Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

3) Venn diagrams.: Easier

Solution for Question 1:

Number of people that owned dogs only: 64 - 34 = 30

Number of people that owned cats only: 80 - 34 - 30 = 16

Solution for Question 2:

- a) Number of people that only had a black pen: 60 37 18 = 5
- b) Probability of a person owning both types of pen:

$$\frac{18}{60} = \frac{3}{10}$$

3) Venn diagrams.: Medium

Solution for Question 3:

Solution for Question 4:

a) Tea: 6 + 12 = 18Coffee: 9 + 12 = 21

Therefore, False

- b) False
- c) False

Solution for Question 5:

a) i)
$$A \cap B = A \text{ and } B = \{9,15\}$$

ii) A U B = A or B =
$$\{3,5,6,12,18\}$$

3) Venn diagrams.: Harder

Solution for Question 6:

Number of people who replied with cats only:

$$b-a-4$$

4) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

4) Inequalities Regions: Medium

2. The region R satisfies the inequalities

$$x \ge 2$$
, $y \ge 1$, $x + y \le 6$

On the grid below, draw straight lines and use shading to show the region R.

4) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

5) Pythagoras: Easier

1.

P 8 cm

Diagram NOT accurately drawn

PQR is a right-angled triangle.

PQ = 16 cm.

PR = 8 cm.

Calculate the length of QR.

Give your answer correct to 2 decimal places.

$$QR^2 = 16^2 - 8^2 = 192$$

$$QR = \sqrt{192} = 13.86 \ cm$$

....13.86.... cm

(3 marks)

2.

Diagram NOT accurately drawn

XYZ is a right-angled triangle.

XY = 3.2 cm.

XZ = 1.7 cm.

Calculate the length of YZ.

Give your answer correct to 3 significant figures.

$$YZ^2 = 3.2^2 + 1.7^2 = 13.13$$

$$YZ = \sqrt{13.13} = 3.62 \ cm$$

JANSON Eleanor, Page 222 /480

5) Pythagoras: Medium

3.

ABC is a right-angled triangle.

$$AB = 8 \text{ cm},$$

 $BC = 11 \text{ cm}.$

Calculate the length of \mathcal{AC} .

Give your answer correct to 3 significant figures.

$$AC^2 = 8^2 + 11^2 = 185$$

 $AC = \sqrt{185} = 13.6 \ cm$

(3 marks)

4.

Angle *MLN* = 90°. *LM* = 3.7 m. *MN* = 6.3 m.

Work out the length of LN.

Give your answer correct to 3 significant figures.

$$LN^2 = 6.3^2 - 3.7^2 = 26$$

$$LN = \sqrt{26} = 5.10 m$$

JANSON Eleanor, Page 223 /480

13.6

5) Pythagoras: Harder

13. ABCD is a trapezium.

Diagram NOT accurately drawn

AD = 10 cm AB = 9 cm DC = 3 cm Angle ABC = angle BCD = 90°

Calculate the length of *AC*. Give your answer correct to 3 significant figures.

14. A ladder is 6 m long.

The ladder is placed on horizontal ground, resting against a vertical wall.

The instructions for using the ladder say that the bottom of the ladder must not be closer than 1.5 m from the bottom of the wall.

How far up the wall can the ladder reach? Give your answer correct to 1 decimal place.

$$h^2 = 6^2 - 1.5^2 = 33.75$$

 $h = \sqrt{33.75} = 5.8 m$

JANSON Eleanor, Page 224 /480

5.8

..... m

KANE Emily

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: KA91892, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Simultaneous Equations. Mathswatch Clip: 162

Topic 2: Changing Ratios. Mathswatch Clip: NA

Topic 3: Solving Quadratics Using the Formula. MW: 191

Topic 4: Venn diagrams.. Mathswatch Clip: 127

Topic 5: Inequalities Regions. Mathswatch Clip: 198

1) Simultaneous Equations: Easier

1) Solve the simultaneous equations.

$$2x + 3y = 9$$
$$5x + 3y = 18$$

$$2 - 0$$

$$5 \times + 3y = 18$$

$$2 \times + 3y = 9$$

$$3 \times = \frac{9}{3}$$

$$x = 3$$

Sub
$$3c = 3$$
 into 1

$$2x + 3y = 9$$

$$46 + 3y = 9$$

$$3y = 3$$

$$y = \frac{1}{3}$$

$$y = \frac{1}{3}$$
(3 Marks)

2) Solve the simultaneous equations.

$$4x + 2y = 9 \times 2$$

$$8x + 8y = 20$$

(2) - (3)

$$8x + 8y = 20$$

 $8x + 4y = 18$
 $4y = 2$
 $4y = 2$
 $4y = 0.5$

3 8x +4y = 18
Sub y = 0.5 into (1)

$$4x + 1 = 9$$

 -1
 $4x = 8$
 $4x = 2$
 $x = 2$
 $y = 0.5$
(4 Marks)

KANE Emily, Page 226 /480

1) Simultaneous Equations: Medium

7) Solve the simultaneous equations.

$$2 + 3$$

$$4 \times -99 = -34$$

$$18 \times +99 = 45 + 22 \times = \frac{1}{22}$$

$$2 = 0.5$$

Sub
$$x = 0.5$$
 into (1)
 $3 + 3y = 15$
 $3y = 12$
 $3y = 4$
 $x = \frac{0.5}{4}$
 $y = 4$
(4 Marks)

8) Solve the simultaneous equations.

$$2 + 3$$

$$8x - 6y = 51$$

$$15x + 6y = 87 + 4$$

$$23x = 138$$

$$23x = 6$$

(4 Marks)

KANE Emily, Page 227 /480

5x + 2y = 29 + 3

8x - 6y = 51

1) Simultaneous Equations: Harder

9) Bill goes into a chip shop and buys 3 fish and 2 portions of chips, it cost him £5.20

Jenny also goes into the same chip shop. She buys **5 fish** and **6 portions of chips,** it cost her £10.80

10) There are some ducks and some sheep on a farm. Altogether they have 35 heads and 94 feet.

How many ducks and sheep are there?

(a)
$$2d + 5 = 35$$
 (heads) $\times 2$

(b) $2d + 4s = 94$ (feet)

(c) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(d) $3 + 2s = 70$ | Sub $s = 12$ into (feet)

(e) $3 + 2s = 70$ | Sub $s = 12$ into (feet)

(feet)

(feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

(g) $2d + 2s = 70$ | Sub $s = 12$ into (feet)

2) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

2) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

2) Changing Ratios: Harder

Solution for Question 6:

Sedimentary : Metamorphic = 2:3 Metamorphic : Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

3) Solving Quadratics Using the Formula: Easier

Solve $3x^2 + 7x - 13 = 0$ amen's Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b \pm \sqrt{b^2 - 4ac}$$

$$= -7 \pm \sqrt{7^2 - 4x^3x - 13} = -7 \pm \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$x = 5.55$$
 or $x = -8.55$

KANE Emily, Page 232 /480

3) Solving Quadratics Using the Formula: Medium

3. Solve $x^2 + 3x - 5 = 0$ Give your solutions correct to 4 significant figures.

$$\alpha = 1 \quad b = 3 \quad c = -5$$

$$\alpha = -b \pm \sqrt{b^2 - 4ac}$$

$$= -3 \pm \sqrt{9 - (4x \times 1x - 5)}$$

$$= -3 \pm \sqrt{29}$$

$$= -3 \pm \sqrt{29}$$

$$\alpha = 1.192582404 \text{ or } -4.192582404$$

$$x = 1.193$$
 or -4.193

(3 marks)

4. Solve this quadratic equation.

$$x^2 - 5x - 8 = 0$$

Give your answers correct to 3 significant figures.

$$\alpha = 1 \quad b = -5 \quad c = -8$$

$$\alpha = 5 \pm \sqrt{25 - (4x1x - 8)}$$

$$= 5 \pm \sqrt{57}$$

$$2$$

$$\alpha = 6.274917218 \quad \text{or } -1.274917218$$

$$x = ...6$$
 KANE Emily, Page 233 /480 $x = ... - 1 \cdot 2 \cdot 7$

3) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$

$$18$$

$$x = 4.159474732 \text{ or } x = -2.270585844$$

$$x = 4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

1.38 cm

4) Venn diagrams.: Easier

Solution for Question 1:

Number of people that owned dogs only: 64 - 34 = 30

Number of people that owned cats only: 80 - 34 - 30 = 16

Solution for Question 2:

- a) Number of people that only had a black pen: 60 37 18 = 5
- b) Probability of a person owning both types of pen:

$$\frac{18}{60} = \frac{3}{10}$$

4) Venn diagrams.: Medium

Solution for Question 3:

Solution for Question 4:

a) Tea: 6 + 12 = 18Coffee: 9 + 12 = 21Therefore, False

b) False

c) False

Solution for Question 5:

a)

i)
$$A \cap B = A \text{ and } B = \{9,15\}$$

ii) A U B = A or B =
$$\{3,5,6,12,18\}$$

4) Venn diagrams.: Harder

Solution for Question 6:

Number of people who replied with cats only:

$$b-a-4$$

5) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$y > -4$$

$$y > -4 \qquad x < 2 \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

5) Inequalities Regions: Medium

2. The region R satisfies the inequalities

$$x \ge 2$$
, $y \ge 1$, $x + y \le 6$

On the grid below, draw straight lines and use shading to show the region R.

5) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

LEE Yasmin

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: LE91893, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Missing Mean Questions. Mathswatch Clip: NA

Topic 2: Changing Ratios. Mathswatch Clip: NA

Topic 3: Inequalities Regions. Mathswatch Clip: 198

Topic 4: More Difficult Rearranging Formulae. MW: 190

Topic 5: Pythagoras. Mathswatch Clip: 150

1) Missing Mean Questions: Easier

1) Missing Mean Questions: Medium

1) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

 $28 \times 10 = 280$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

2) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

2) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

2) Changing Ratios: Harder

Solution for Question 6:

Sedimentary : Metamorphic = 2:3 Metamorphic : Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

3) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad x < 2 \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

3) Inequalities Regions: Medium

6. (a) On the grid below, draw straight lines and use shading to show the region \mathbb{R} that satisfies the inequalities

The point P with coordinates (x, y) lies inside the region \mathbb{R} . x and y are **integers**.

(b) Write down the coordinates of **all** the points of \mathbb{R} whose coordinates are both integers.

3) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$
,

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

4) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$2 = d + ac$$

$$a$$

$$q = \frac{\partial}{\partial t} + \alpha C \tag{3}$$
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$M + 21 = 5n$$
 $N = M + 21$
 $S = 5n$

4) More Difficult Rearranging Formulae: Medium

10.
$$P = \frac{n^2 + a}{n + a}$$

Rearrange the formula to make a the subject.

$$p(n+a) = n^2 + a$$

$$pn + pa = n^2 + a$$

$$pa - a = n^2$$

$$a(p-1) = n^2$$

$$a = n^2$$

/Total 4 may

(Total 4 marks)

$$\frac{x}{x+c} = \frac{p}{q}$$

Make x the subject of the formula.

$$x = p(x+c)$$

$$x(2-p) = cp$$

$$x = cp$$

$$y = p$$

LEE Yasmin, Page 252 /480 X =

4) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fu = uv$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$fv$$

5) Pythagoras: Easier

1.

Diagram NOT accurately drawn

PQR is a right-angled triangle.

PQ = 16 cm.

PR = 8 cm.

Calculate the length of QR.

Give your answer correct to 2 decimal places.

$$QR^2 = 16^2 - 8^2 = 192$$

$$QR = \sqrt{192} = 13.86 \ cm$$

....13.86.... cm

(3 marks)

2.

Diagram NOT accurately drawn

XYZ is a right-angled triangle.

XY = 3.2 cm.

XZ = 1.7 cm.

Calculate the length of YZ.

Give your answer correct to 3 significant figures.

$$YZ^2 = 3.2^2 + 1.7^2 = 13.13$$

$$YZ = \sqrt{13.13} = 3.62 \ cm$$

LEE Yasmin, Page 254 /480

.....3.62...... cm

5) Pythagoras: Medium

7.

old version answers: Q11 22.4 cm Q12 11.9cm

Diagram NOT accurately drawn

A rectangular television screen has a width of 45 cm and a height of 34 cm.

Work out the length of the diagonal of the screen. Give your answer correct to the nearest centimetre.

$$x^2 = 45^2 + 34^2 = 3181$$

$$x = \sqrt{3181} = 56 \ cm$$

56 (4 marks)

8.

Diagram NOT accurately drawn

Work out the length, in centimetres, of AM. Give your answer correct to 2 decimal places.

$$BM = \frac{1}{2}BC = 4 \ cm$$

$$AM^2 = 7^2 - 4^2 = 33$$
EE Yasmin, Page 255/480

5.74_{.. cm}

(3 marks)

5) Pythagoras: Harder

13. ABCD is a trapezium.

Diagram NOT accurately drawn

(5 marks)

AD = 10 cm AB = 9 cm DC = 3 cm Angle ABC = angle BCD = 90°

Calculate the length of *AC*.

Give your answer correct to 3 significant figures.

$$AP = 9 - 3 = 6 cm$$

 $PD^2 = 10^2 - 6^2 = 64$
 $BC = PD = \sqrt{64} = 8 cm$
 $AC^2 = 9^2 + 8^2 = 145$
 $AC = \sqrt{145} = 12.0$ cm

14. A ladder is 6 m long.

The ladder is placed on horizontal ground, resting against a vertical wall.

The instructions for using the ladder say that the bottom of the ladder must not be closer than 1.5 m from the bottom of the wall.

How far up the wall can the ladder reach? Give your answer correct to 1 decimal place.

$$h^2 = 6^2 - 1.5^2 = 33.75$$

 $h = \sqrt{33.75} = 5.8 m$

LEE Yasmin, Page 256 /480

5.8

8

LEIGH-VALERO Nadia

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: LE91894, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Bearings. Mathswatch Clip: 124

Topic 2: Simple Bounds. Mathswatch Clip: 132

Topic 3: Missing Mean Questions. Mathswatch Clip: NA

Topic 4: Standard Form. Mathswatch Clip: 83

Topic 5: Solving Quadratics Using the Formula. MW: 191

1) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

1) Bearings: Medium

9. The bearing of a ship from a lighthouse is 050°

Work out the bearing of the lighthouse from the ship.

DRAW A SKETCH!

If accurate, you can
measure the bearing

230 ...

(2 marks)

1) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

2) Simple Bounds: Easier

 A piece of string has a length of 55 mm to the nearest mm. (a) Write down the shortest possible length of the piece of string. 		
(a) Write down the shortest possible length of the piece of string. (b) Write down the greatest possible length of the piece of string.	<u>54.5</u>	mm (1)
	<u>55.5</u>	mm (1) (2 marks)
2. Chelsea's height is 158 cm to the nearest cm. (a) Write down Chelsea's minimum possible height.	157.5	s cm
(b) Write down Chelsea's maximum possible height.		(1)
	158.5	(1) (2 marks)

2) Simple Bounds: Medium

3. A is 4.2 correct to the nearest decimal place. B is 13 correct to the nearest whole number. a) What is the error interval for A? $4.15 \le A < 4.25$ b) What is the lower bound of B? 12.5 cm (1) c) What is the error interval of A + B? Lower bound A+B 4.15 + 12.5 = 16.65 Upper bound A+B 4.25 + 13.5 = 17.75

LEIGH-VALERO Nadia, Page 262 /480

(1)

 $16.65 \le A + B < 17.75$

cm

2) Simple Bounds: Harder

4.

The sides of the rectangle above are measured to the nearest cm.

a) Work out a lower bound for the perimeter.

Lower bounds for the sides are 4.5cm and 7.5cm So lower bounds for perimeter is $2\times4.5 + 2\times7.5 = 9 + 15 = 24cm$

<u>24cm</u>

b) Work out the upper bound for the perimeter.

Upper bounds for the sides are 5.5cm and 8.5cm So lower bounds for perimeter is $2 \times 5.5 + 2 \times 8.5 = 11 + 17 = 28cm$

28cm (4 marks)

5. Tom has 100 identical pens.

Each of these pen weighs 5 grams to the nearest gram.

Work out the greatest possible total weight of all 100 pens. Give your answer in kilograms.

Upper bound for weight of one pen: 5.5 g So for 100 pens upper bound is $100 \times 5.5 = 550g$ One kilogram = 1000 grams so

550g = 0.55kg

LEIGH-VALERO Nadia, Page 263 /480 kg

(3 marks)

3) Missing Mean Questions: Easier

3) Missing Mean Questions: Medium

LEIGH-VALERO Nadia, Page 265 /480

3) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

$$28 \times 10 = 280$$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

4) Standard Form: Easier

1. (a) Write the number 0.00037 in standard form.

James C

3.7×10⁴

(b) Write $8.25 \times 10^{\frac{3}{3}}$ as an ordinary number.

(1)

8250

(c) Work out $(2.1 \times 10^8) \times (6 \times 10^{-5})$. Write your answer in standard form.

$$2.1 \times 10^8 \times 6 \times 10^{-5}$$

= 12.6×10^3
= 1.26×10^4

 1.26×10^4 (2)

(4 marks)

2. (a) Write 6.43×10^5 as an ordinary number.

643000

(1)

(b) Work out the value of $2 \times 10^7 \times 8 \times 10^{-12}$ Give your answer in standard form.

$$2 \times 10^{7} \times 8 \times 10^{-12}$$

$$= 16 \times 10^{-5}$$

$$= 1.6 \times 10^{-4}$$

1.6×10-4

(2)

(3 marks)

4) Standard Form: Medium

$$p^2 = \frac{x - y}{xy}$$

$$x = 8.5 \times 10^9$$

 $y = 4 \times 10^8$

Find the value of p.

Give your answer in standard form correct to 2 significant figures.

$$\rho^{2} = \frac{8.5 \times 10^{9} - 4 \times 10^{8}}{8.5 \times 10^{9} \times 4 \times 10^{8}} = \frac{8.1 \times 10^{9}}{3.4 \times 10^{18}}$$

$$= 2.38235... \times 10^{-9}$$

$$= 2.4 \times 10^{-9} (2sf).$$

$$\rho = \sqrt{2.38235... \times 10^{-9}}$$

$$= 4.880935... \times 10^{-5}$$

$$= 4.9 \times 10^{-5} (2sf)$$

4,9×10-5 (2sf)

(4 marks)

$$y^2 = \frac{ab}{a+b}$$

$$a = 3 \times 10^8$$
$$b = 2 \times 10^7$$

Find y.

Give your answer in standard form correct to 2 significant figures.

$$y^{2} = \frac{3 \times 10^{8} \times 2 \times 10^{7}}{3 \times 10^{8} + 2 \times 10^{7}}$$

$$= \frac{6 \times 10^{15}}{3.2 \times 10^{8}}$$

$$= 18750000$$

$$= 18750000$$

$$= 4330.127...$$

$$= 4300 (2sf)$$

$$= 4.3 \times 10^{3} (2sf)$$

$$LEIGH-VALERO Nadia, Page 268/480$$
(4 marks)

4) Standard Form: Harder

Worded Standard Form

1) The world's smallest snail travels 4×10^{-3} m a month. How many months would it take for the snail to travel? 2×10^{-1} m?

2)

The time taken for light to reach Earth from the edge of the known universe is 14 000 000 000 years.

Light travels at the speed of 9.46×10^{12} km/year.

Work out the distance, in kilometres, from the edge of the known universe to Earth. Give your answer in standard form.

$$S = \frac{D}{T}$$

$$D = 9.46 \times 10^{12} \times 1.4 \times 10^{10}$$

$$= 13.244 \times 10^{22}$$

$$= 1.3244 \times 10^{23}$$

5) Solving Quadratics Using the Formula: Easier

Solve $3x^2 + 7x - 13 = 0$ amen's Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b \pm \sqrt{b^2 - 4ac}$$

$$= -7 \pm \sqrt{7^2 - 4x3x - 13} = -7 \pm \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$=-6\pm\sqrt{796}$$

$$x = 5.55$$
 or $x = -8.55$

5) Solving Quadratics Using the Formula: Medium

8. The diagram below shows a 6-sided shape.

All the corners are right angles.

All measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 25 cm^2 .

(a) Show that
$$6x^2 + 17x - 39 = 0$$

Area $A = (3x + 5)(3x - 2)$ Area $B = 2(3x - 2)$
 $= 6x^2 - 4x + 15x - 10$ $= 6x^2 + 11x - 10$
 $= 6x^2 + 11x - 10$ So $6x^2 + 17x - 14 = 25$
(b) (i) Solve the equation $6x^2 + 17x - 14 = 25$

$$6x^{2} + 17x - 39 = 0$$

$$\alpha = 6 \quad b = 17 \quad c = -39$$

$$x = -17 \pm \sqrt{17^{2} - 4(6)(-39)}$$

$$x = 1.5 \quad \text{or} \quad x = -4.3$$

x = or x =

(ii) Hence work out the length of the longest side of the shape.

$$(2 \times 1.5) + 5 = 8$$

......S......cm

5) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x \qquad = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$

$$18$$

$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = 4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

1.38 cm

LEIGH-VALERO Tori

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: LE91895, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Bearings. Mathswatch Clip: 124

Topic 2: Missing Mean Questions. Mathswatch Clip: NA

Topic 3: Solving Quadratics Using the Formula. MW: 191

Topic 4: Venn diagrams.. Mathswatch Clip: 127

Topic 5: Inequalities Regions. Mathswatch Clip: 198

1) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

1) Bearings: Medium

9. The bearing of a ship from a lighthouse is 050°

Work out the bearing of the lighthouse from the ship.

DRAW A SKETCH!

If accurate, you can
measure the bearing

230 ...

(2 marks)

1) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

2) Missing Mean Questions: Easier

2) Missing Mean Questions: Medium

LEIGH-VALERO Tori, Page 278 /480

2) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

$$28 \times 10 = 280$$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

3) Solving Quadratics Using the Formula: Easier

Solve $3x^2 + 7x - 13 = 0$ amen's Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b + \sqrt{b^2 - 4ac}$$

$$= -7 + \sqrt{7^2 - 4x^3x - 13} = -7 + \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$=-6\pm\sqrt{796}$$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$x = 5.55$$
 or $x = -8.55$

LEIGH-VALERO Tori, Page 280 /480

3) Solving Quadratics Using the Formula: Medium

8. The diagram below shows a 6-sided shape.

All the corners are right angles.

All measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 25 cm^2 .

(a) Show that
$$6x^2 + 17x - 39 = 0$$

Area $A = (3x + 5)(3x - 2)$ Area $B = 2(3x - 2)$
 $= 6x^2 - 4x + 15x - 10$ $= 6x^2 + 11x - 10$
 $= 6x^2 + 11x - 10$ So $6x^2 + 17x - 14 = 25$
 $= 6x^2 + 17x - 14$
(b) (i) Solve the equation

$$6x^{2} + 17x - 39 = 0$$

$$\alpha = 6 \quad b = 17 \quad c = -39$$

$$x = -17 \pm \sqrt{17^{2} - 4(6)(-39)}$$

$$12$$

$$x = 1.5 \quad \text{or} \quad x = -4.3$$

x = or x =

(ii) Hence work out the length of the longest side of the shape.

$$(2 \times 1.5) + 5 = 8$$

3) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x \qquad = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$
18
$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = 4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

1.38 cm

4) Venn diagrams.: Easier

Solution for Question 1:

Number of people that owned dogs only: 64 - 34 = 30

Number of people that owned cats only: 80 - 34 - 30 = 16

Solution for Question 2:

- a) Number of people that only had a black pen: 60 37 18 = 5
- b) Probability of a person owning both types of pen:

$$\frac{18}{60} = \frac{3}{10}$$

PINPOINT

4) Venn diagrams.: Medium

Solution for Question 3:

Solution for Question 4:

a) Tea: 6 + 12 = 18Coffee: 9 + 12 = 21

Therefore, False

- b) False
- c) False

Solution for Question 5:

a) i)
$$A \cap B = A \text{ and } B = \{9,15\}$$

ii) A U B = A or B =
$$\{3,5,6,12,18\}$$

4) Venn diagrams.: Harder

Solution for Question 6:

Number of people who replied with cats only:

$$b-a-4$$

5) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

$$y < 2x + 1$$

(Total for Question 19 = 4 marks)

5) Inequalities Regions: Medium

6. (a) On the grid below, draw straight lines and use shading to show the region \mathbb{R} that satisfies the inequalities

The point P with coordinates (x, y) lies inside the region \mathbb{R} . x and y are **integers**.

(b) Write down the coordinates of **all** the points of \mathbb{R} whose coordinates are both integers.

5) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

LUNT Aoife

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: LU91896, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Bearings. Mathswatch Clip: 124

Topic 2: Missing Mean Questions. Mathswatch Clip: NA

Topic 3: Inequalities Regions. Mathswatch Clip: 198

Topic 4: More Difficult Rearranging Formulae. MW: 190

Topic 5: Pythagoras. Mathswatch Clip: 150

1) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

1) Bearings: Medium

9. The bearing of a ship from a lighthouse is 050°

Work out the bearing of the lighthouse from the ship.

DRAW A SKETCH!

If accurate, you can
measure the bearing

230 ...

(2 marks)

1) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

2) Missing Mean Questions: Easier

2) Missing Mean Questions: Medium

LUNT Aoife, Page 294 /480

2) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

 $28 \times 10 = 280$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

£25.78_

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

3) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

3) Inequalities Regions: Medium

6. (a) On the grid below, draw straight lines and use shading to show the region ${\bf R}$ that satisfies the inequalities

The point P with coordinates (x, y) lies inside the region \mathbb{R} . x and y are **integers**.

(b) Write down the coordinates of **all** the points of \mathbb{R} whose coordinates are both integers.

3) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$
,

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

4) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$2 = d + ac$$

$$a$$

$$q = \frac{\partial}{\partial t} + \alpha C \tag{3}$$
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$M + 21 = 5n$$
 $M = 11$
 $M = 11$

4) More Difficult Rearranging Formulae: Medium

10.
$$P = \frac{n^2 + a}{n + a}$$

Rearrange the formula to make a the subject.

$$p(n+a) = n^2 + a$$

$$pn + pa = n^2 + a$$

$$pa - a = n^2$$

$$a(p-1) = n^2$$

$$a = n^2$$

a =.....

(Total 4 marks)

$$\frac{x}{x+c} = \frac{p}{q}$$

Make x the subject of the formula.

$$x = p(x+c)$$

$$x(2 = px + cp)$$

$$x(2 = p) = cp$$

$$x = cp$$

$$y = p$$

LUNT Aoife, Page 300 /480 X =

4) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fu = uv$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$u = fv$$

5) Pythagoras: Easier

1.

Diagram NOT accurately drawn

PQR is a right-angled triangle.

PQ = 16 cm.

PR = 8 cm.

Calculate the length of QR.

Give your answer correct to 2 decimal places.

$$QR^2 = 16^2 - 8^2 = 192$$

$$QR = \sqrt{192} = 13.86 \ cm$$

....13.86.... cm

(3 marks)

2.

Diagram NOT accurately drawn

XYZ is a right-angled triangle.

XY = 3.2 cm.

XZ = 1.7 cm.

Calculate the length of YZ.

Give your answer correct to 3 significant figures.

$$YZ^2 = 3.2^2 + 1.7^2 = 13.13$$

$$YZ = \sqrt{13.13} = 3.62 \ cm$$

LUNT Aoife, Page 302 /480

5) Pythagoras: Medium

7.

old version answers:

Q11 22.4 cm

Q12 11.9cm

Diagram NOT accurately drawn

A rectangular television screen has a width of 45 cm and a height of 34 cm.

Work out the length of the diagonal of the screen. Give your answer correct to the nearest centimetre.

$$x^2 = 45^2 + 34^2 = 3181$$

$$x = \sqrt{3181} = 56 \ cm$$

.....cm (4 marks)

8.

Diagram NOT accurately drawn

Work out the length, in centimetres, of *AM*. Give your answer correct to 2 decimal places.

$$BM = \frac{1}{2}BC = 4 \ cm$$

$$AM^2 = 7^2 - 4^2 = 33$$
UNT Aoife, Page 303 /480

5.74 . cm

(3 marks)

5) Pythagoras: Harder

13. ABCD is a trapezium.

Diagram NOT accurately drawn

(5 marks)

AD = 10 cmAB = 9 cmDC = 3 cmAngle ABC = angle BCD = 90°

Calculate the length of AC. Give your answer correct to 3 significant figures.

$$AP = 9 - 3 = 6 cm$$

 $PD^2 = 10^2 - 6^2 = 64$
 $BC = PD = \sqrt{64} = 8 cm$
 $AC^2 = 9^2 + 8^2 = 145$
 $AC = \sqrt{145} = 12.0$ cm

14. A ladder is 6 m long.

The ladder is placed on horizontal ground, resting against a vertical wall.

The instructions for using the ladder say that the bottom of the ladder must not be closer than 1.5 m from the bottom of the wall.

How far up the wall can the ladder reach? Give your answer correct to 1 decimal place.

$$h^2 = 6^2 - 1.5^2 = 33.75$$

 $h = \sqrt{33.75} = 5.8 m$

LUNT Aoife, Page 304 /480

5.8

MACKENZIE Jed

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: MA91897, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Bearings. Mathswatch Clip: 124

Topic 2: Missing Mean Questions. Mathswatch Clip: NA

Topic 3: Changing Ratios. Mathswatch Clip: NA

Topic 4: Solving Quadratics Using the Formula. MW: 191

Topic 5: More Difficult Rearranging Formulae. MW: 190

1) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

1) Bearings: Medium

3.

clockwise

(1)(2 marks)

The diagram shows the position of two ports P and Q on a map.

(b) On the diagram, draw a line on a bearing of 107° from A.

(b) Mark the position of R with a cross (×) and label it R.

MACKENZIE Jed, Page 307 /480

(2)

1) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

2) Missing Mean Questions: Easier

2) Missing Mean Questions: Medium

MACKENZIE Jed, Page 310 /480

2) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

$$28 \times 10 = 280$$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

PINPOINT

3) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12 Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

PINPOINT

3) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

PINPOINT

3) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

4) Solving Quadratics Using the Formula: Easier

1. Solve
$$3x^2 + 7x - 13 = 0$$

Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b \pm \sqrt{b^2 - 4ac}$$

$$= -7 \pm \sqrt{7^2 - 4x3x - 13} = -7 \pm \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$x = 5.55$$
 or $x = -8.55$

4) Solving Quadratics Using the Formula: Medium

3. Solve $x^2 + 3x - 5 = 0$ Give your solutions correct to 4 significant figures.

$$\alpha = 1 \quad b = 3 \quad c = -5$$

$$\alpha = -b \pm \sqrt{b^2 - 4ac}$$

$$= -3 \pm \sqrt{9 - (4x \times 1x - 5)}$$

$$= -3 \pm \sqrt{29}$$

$$= -3 \pm \sqrt{29}$$

$$\alpha = 1.192582404 \text{ or } -4.192582404$$

$$x = 1.193$$
 or -4.193

(3 marks)

4. Solve this quadratic equation.

$$x^2 - 5x - 8 = 0$$

Give your answers correct to 3 significant figures.

$$\alpha = 1 \quad b = -5 \quad c = -8$$

$$\alpha = 5 \pm \sqrt{25 - (4x1x - 8)}$$

$$= 5 \pm \sqrt{57}$$

$$2$$

$$\alpha = 6.274917218 \quad \text{or } -1.274917218$$

$$x = ... \frac{2}{\text{MACKENZIE Jed; Page 316 1/480}} - ... \frac{2}{2}$$

4) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x \qquad = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$

$$18$$

$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = 4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

1.38 cm

5) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_{2}-a_{1}=d$$

$$a_{2}=d+a_{1}$$

$$a_{2}=d+a_{2}$$

$$q = \frac{\partial}{\partial t} + \alpha C \tag{3}$$
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$M + 21 = 5H$$
 $M = M + 21$

5) More Difficult Rearranging Formulae: Medium

(b) Make
$$p$$
 the subject of the formula $4(p-2q) = 3p + 2$

$$p = \dots$$

(3)

(Total 5 marks)

$$P = \pi r + 2r + 2a$$

Make r the subject of the formula

MACKENZIE Jed, Page 319 /4/80_

5) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fv = v$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$u = fv$$

$$fv = fv$$

MCLAUGHLIN Laura

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: MC91898, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Index Notation. Mathswatch Clip: 131

Topic 2: Angles in Polygons. Mathswatch Clip: 123

Topic 3: Bearings. Mathswatch Clip: 124

Topic 4: Writing one number as % of another. MW: 88

Topic 5: Changing Ratios. Mathswatch Clip: NA

1) Index Notation: Easier

1.	(a)	Simplify	$m^3 \times m^6$	مسيدي سنڌ	m 3+	6

(b) Simplify
$$\frac{p^8}{p^2}$$
 ρ^{8-2}

(c) Simplify
$$(2n^3)^4$$
 $6 n^{3 \times 4}$

(4 marks)

(2)

2. (a) Simplify
$$m^6 \times m^7$$
 $M^6 + 7$

(b) Simplify
$$x^0$$

(c) Simplify
$$(16y^6)^{\frac{1}{2}}$$

3. (a) Simplify
$$m^5 \div m^3$$
 ~ 3

(b) Simplify
$$5x^4y^3 \times x^2y$$

$$5 \times 4^{+2}y^{3+1}$$

$$5x^{6}y^{4}$$

1) Index Notation: Medium

4. (a) Simplify
$$a^4 \times a^5$$

$$\frac{45e^{6}f^{8}}{5ef^{2}}$$

$$\frac{45e^{6}f^{8}}{5ef^{2}}$$
 9e⁶⁻¹ F ⁸⁻²

Write down the value of $9^{\frac{1}{2}}$ (c)

(4 marks)

$$m^2 \times m^4 \,$$

(b) Simplify

$$y^7 \div y^5$$

Simplify (c)

$$(m^3)^5$$

(4 marks)

6. Simplify fully

(a)
$$p^2 \times p^7$$

$$\frac{3q^4 \times 2q^5}{q^3}$$

$$(3x2)q^{4+5} = 6q^{9-3}$$

 $(2xy^3)^5$ (c)

$$2^5 \times 5y^{3 \times 5}$$

$$32 \times 5$$

1) Index Notation: Harder

20. (a) Find the value of

(ii)
$$64^{\frac{1}{2}}$$
 $\sqrt{64}$

(iii)
$$64^{-\frac{2}{3}} = \frac{1}{64^{\frac{2}{3}}}$$

$$= (\sqrt[3]{64})^2 = \frac{1}{4^2}$$

2) Angles in Polygons: Easier

1. Each exterior angle of a regular polygon is 30°.

Work out the number of sides of the polygon.

(2 marks)

2.

Diagram **NOT** accurately drawn

Work out the size of an exterior angle of a regular pentagon.

72 .

(2 marks)

3.

Diagram **NOT** accurately drawn

Calculate the size of the exterior angle of a regular hexagon.

2) Angles in Polygons: Medium

4. The size of each exterior angle of a regular polygon is 40°.

Work out the number of sides of the regular polygon.

9		
	(2	marks)

5. The size of each interior angle of a regular polygon is 156°. Work out the number of sides of the polygon.

$$180 - 156 = 24$$
 (Extenor angle)
 $360 - 24 = 15$

(3 marks)

6. Here is a regular polygon with 9 sides.

Diagram NOT accurately drawn

Work out the size of an exterior angle.

2) Angles in Polygons: Harder

11.

Diagram **NOT** accurately drawn

ABCDE and EHJKL are regular pentagons. AEL is an equilateral triangle.

Work out the size of angle DEH.

Pentagon:
$$\frac{180 \times (n-2)}{n}$$

= $\frac{180 \times 3}{5} = \frac{540}{5} = 108$

84 (4 marks)

3) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

3) Bearings: Medium

3.

(b) On the diagram, draw a line on a bearing of 107° from A.

clockwise

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

(b) Mark the position of R with a cross (×) and label it R.

MCLAUGHLIN Laura, Page 329 /480

(2) (3 marks)

3) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

4) Writing one number as % of another: Easier

4) Writing one number as % of another: Medium

5) In a sale a coat costs £240. Before the sale the coat was priced at £350. Work out the percentage reduction.

$$\begin{aligned} \textit{Percentage reduction} &= \frac{\textit{actual reduction}}{\textit{original amount}} \times 100 \\ &= \textit{actual reduction} = 350 - 240 = 110 \\ &= \frac{110}{350} \times 100 = 31.4\% \end{aligned}$$

31.4%

(2 Marks)

6) The diagram shows the side elevation of a cylinder container of tennis balls. Each tennis ball has a radius of 3.2cm.

What percentage of the volume of the container is filled by tennis balls?

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

(5 Marks)

4) Writing one number as % of another: Harder

7) The average adult should have a maximum of 90g of sugar a day.

Tom buys this can of soft drink. His friend tells him that it is over 55% of his daily allowance. Is she correct? You **must** show your working.

1m1 contains
$$\frac{15.7}{100} = 0.157$$
g sugar

 $330m1 \text{ contains } 0.157 \times 330 = 51.81g \text{ sugar}$

$$\frac{51.81}{90} \times 100 = 57.6\%$$

His friend is correct. The drink is 57.6% of his daily sugar allowance.

5) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

5) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

5) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

MELLISH Aaron

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: ME91899, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Similar Shapes - linear scale factors only. MW: 144

Topic 2: Missing Mean Questions. Mathswatch Clip: NA

Topic 3: Writing one number as % of another. MW: 88

Topic 4: Standard Form. Mathswatch Clip: 83

Topic 5: Changing Ratios. Mathswatch Clip: NA

1) Similar Shapes - linear scale factors only: Easier

1) Work out

Solution for Question 1:

a)
$$9 \times 1.5$$

 $9 \times \frac{3}{2} = \frac{27}{2}$
= 13.5

b)
$$\frac{\frac{5}{2} \times 6}{\frac{30}{2}}$$
$$= 15$$

c)
$$9 \div 1.5$$

 $9 \div \frac{3}{2}$
 $\frac{18}{3}$
= 6

d)
$$21 \div \frac{7}{2}$$
 $\frac{42}{7}$ = 6

(4 Marks)

2) Are these Shapes Similar? Explain

 $4 \times 3 = 12$ so, if similar have scale factor 3, but $5 \times 3 = 15 \ (\neq 20)$

So these shapes are <u>not</u> similar.

1) Similar Shapes - linear scale factors only: Medium

3) The diagram shows two quadrilaterals that are mathematically similar

Diagram NOT accurately drawn

a) Calculate the length of WX

Scale factor =
$$54 \div 9 = 6$$

$$4 \times 6 = 24$$
 cm

24 cm

b) Calculate the length of AC

$$27 \div 6 = \frac{27}{6} = \frac{9}{2} = 4.5 \ cm$$

4.5 cm

(3 Marks)

4)

Diagram NOT accurately drawn

a) Calculate the length of QR

SF=12 ÷ 8 =
$$\frac{12}{8}$$
 = $\frac{3}{2}$ 6 ÷ $\frac{3}{2}$ = 6 × $\frac{2}{3}$ = 4 cm

<u>4 cm</u>

b) Calculate the length of RT

$$PT = 6 \times \frac{3}{2} = 9 \ cm$$
 $RT = PT - PR = 9 - 6 = 3 \ cm$

3 *cm*

MELLISH Aaron, Page 339 /480

(2 Marks)

1) Similar Shapes - linear scale factors only: Harder

5)

Diagram NOT accurately drawn

Find the value of x

$$SF = 30 \div 20 = \frac{3}{2}$$

$$CE = \frac{3}{2} \times CD$$

$$x + 15 = \frac{3x}{2}$$

$$15 = \frac{3x}{2} - x = \frac{x}{2}$$

$$So \qquad x = 15 \times 2 = 30$$

x = 30

(2 Marks)

6) The rectangle ACFD is mathematically similar to rectangle ABED

Diagram NOT accurately drawn

Rotate smaller rectangle

Scale factor: $\frac{20}{8} = \frac{5}{2} = 2.5$

$$8 \div \frac{5}{2} = \frac{16}{5}$$

$$3\frac{1}{5} = 3.2$$
 cm

3.2 cm

2) Missing Mean Questions: Easier

2) Missing Mean Questions: Medium

MELLISH Aaron, Page 342 /480

2) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

$$28 \times 10 = 280$$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

3) Writing one number as % of another: Easier

3) Writing one number as % of another: Medium

5) In a sale a coat costs £240. Before the sale the coat was priced at £350. Work out the percentage reduction.

$$\begin{aligned} \textit{Percentage reduction} &= \frac{\textit{actual reduction}}{\textit{original amount}} \times 100 \\ &= \textit{actual reduction} = 350 - 240 = 110 \\ \\ \textit{Percentage reduction} &= \frac{110}{350} \times 100 = 31.4\% \end{aligned}$$

31.4%

(2 Marks)

6) The diagram shows the side elevation of a cylinder container of tennis balls. Each tennis ball has a radius of 3.2cm.

What percentage of the volume of the container is filled by tennis balls?

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

(5 Marks)

3) Writing one number as % of another: Harder

7) The average adult should have a maximum of 90g of sugar a day.

Tom buys this can of soft drink. His friend tells him that it is over 55% of his daily allowance. Is she correct? You **must** show your working.

1m1 contains
$$\frac{15.7}{100} = 0.157$$
g sugar

 $330m1 \text{ contains } 0.157 \times 330 = 51.81g \text{ sugar}$

$$\frac{51.81}{90} \times 100 = 57.6\%$$

His friend is correct. The drink is 57.6% of his daily sugar allowance.

4) Standard Form: Easier

1. (a) Write the number 0.00037 in standard form.

(June)

3.7×10⁴

(b) Write $8.25 \times 10^{\frac{3}{4}}$ as an ordinary number.

(1)

8250

(c) Work out $(2.1 \times 10^8) \times (6 \times 10^{-5})$. Write your answer in standard form.

$$2.1 \times 10^{8} \times 6 \times 10^{-5}$$

$$= 12.6 \times 10^{3}$$

$$= 1.26 \times 10^{4}$$

 1.26×10^4 (2)

(4 marks)

2. (a) Write 6.43×10^5 as an ordinary number.

643000

(1)

(b) Work out the value of $2 \times 10^7 \times 8 \times 10^{-12}$ Give your answer in standard form.

$$2 \times 10^{7} \times 8 \times 10^{-12}$$

$$= 16 \times 10^{-5}$$

$$= 1.6 \times 10^{-4}$$

1.6×10-4

(2)

(3 marks)

4) Standard Form: Medium

$$p^2 = \frac{x - y}{xy}$$

$$x = 8.5 \times 10^9$$

 $y = 4 \times 10^8$

Find the value of p.

Give your answer in standard form correct to 2 significant figures.

$$\rho^{2} = \frac{8.5 \times 10^{9} - 4 \times 10^{8}}{8.5 \times 10^{9} \times 4 \times 10^{8}} = \frac{8.1 \times 10^{9}}{3.4 \times 10^{18}}$$

$$= 2.38235... \times 10^{-9}$$

$$= 2.4 \times 10^{-9} (2sf).$$

$$\rho = \sqrt{2.38235... \times 10^{-9}}$$

$$= 4.880935... \times 10^{-5}$$

$$= 4.9 \times 10^{-5} (2sf)$$

4,9 ×10-5 (2sf)

(4 marks)

$$y^2 = \frac{ab}{a+b}$$

$$a = 3 \times 10^8$$
$$b = 2 \times 10^7$$

Find y.

Give your answer in standard form correct to 2 significant figures.

$$y^{2} = \frac{3 \times 10^{8} \times 2 \times 10^{7}}{3 \times 10^{8} + 2 \times 10^{7}}$$

$$= \frac{6 \times 10^{15}}{3.2 \times 10^{8}}$$

$$= 18750000$$

$$= 18750000$$

$$= 1330.127...$$

$$= 1300 (2sf)$$

$$= 4.3 \times 10^{3} (2sf)$$

$$= 4.3 \times 10^{3} (2sf)$$

$$= 4.3 \times 10^{3} (2sf)$$
(4 marks)

4) Standard Form: Harder

Worded Standard Form

1) The world's smallest snail travels 4×10^{-3} m a month. How many months would it take for the snail to travel? 2×10^{-1} m?

2)

The time taken for light to reach Earth from the edge of the known universe is 14 000 000 000 years.

Light travels at the speed of 9.46×10^{12} km/year.

Work out the distance, in kilometres, from the edge of the known universe to Earth. Give your answer in standard form.

$$S = \frac{D}{T}$$

$$D = 9.46 \times 10^{12} \times 1.4 \times 10^{10}$$

$$= 13.244 \times 10^{22}$$

$$= 1.3244 \times 10^{23}$$

5) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

5) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

5) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

PAVEY Samuel

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: PA91900, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Index Notation. Mathswatch Clip: 131

Topic 2: Bearings. Mathswatch Clip: 124

Topic 3: Missing Mean Questions. Mathswatch Clip: NA

Topic 4: Solving Quadratics Using the Formula. MW: 191

Topic 5: Venn diagrams.. Mathswatch Clip: 127

1) Index Notation: Easier

1.	(a)	Simplify	$m^3 \times m^6$	· <u> </u>	M 3+6

(b) Simplify
$$\frac{p^8}{p^2}$$
 ρ^{8-2}

(c) Simplify
$$(2n^3)^4$$
 $6 n^{3 \times 4}$

(4 marks)

(2)

2. (a) Simplify
$$m^6 \times m^7$$
 $M^6 + 7$

(b) Simplify
$$x^0$$

(c) Simplify
$$(16y^6)^{\frac{1}{2}}$$

3. (a) Simplify
$$m^5 \div m^3$$

(b) Simplify
$$5x^4y^3 \times x^2y$$

$$5 \times 4^{+2} \cdot y^{3+1}$$

$$5x^6y^4$$

1) Index Notation: Medium

17. Simplify

(i)
$$x^4 \times x^5$$
 χ 4.45

(ii)
$$\frac{p^s}{p^3}$$
 ρ^{s-3}

(iii)
$$3s^2t^3 \times 4s^4t^2$$

(iii) $3s^2t^3 \times 4s^4t^2$ $12s^{2+4}t^{3+2}$

(iv)
$$(q^3)^4$$

(6 marks)

18. Simplify fully

(i)
$$(p^3)^3$$

(ii)
$$\frac{3q^4 \times 2q}{q^3}$$

(ii) $\frac{3q^4 \times 2q^5}{q^3}$ $\frac{6q^{4+5}}{q^3} = 6q^{9-3}$

696 (4 marks)

19. Work out

(i) 4⁰

(ii)
$$4^{-2} = \frac{1}{4^2}$$

16 or 0.0 625

(ii)
$$4^{-2} = \frac{1}{4^2}$$

(iii) $16^{\frac{3}{2}} = (\sqrt{16})^3 = 4^3 =$

64 (4 marks)

1) Index Notation: Harder

20. (a) Find the value of

(ii)
$$64^{\frac{1}{2}}$$
 $\sqrt{64}$

(iii)
$$64^{-\frac{2}{3}} = \frac{1}{64^{\frac{2}{3}}}$$

$$= (\sqrt[3]{64})^2 = \frac{1}{4^2}$$

2) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

2) Bearings: Medium

9. The bearing of a ship from a lighthouse is 050°

Work out the bearing of the lighthouse from the ship.

DRAW A SKETCH!

If accurate, you can
measure the bearing

230 ...

(2 marks)

2) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

3) Missing Mean Questions: Easier

3) Missing Mean Questions: Medium

3) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

$$28 \times 10 = 280$$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 -

solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

4) Solving Quadratics Using the Formula: Easier

1. Solve
$$3x^2 + 7x - 13 = 0$$

Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b \pm \sqrt{b^2 - 4ac}$$

$$= -7 \pm \sqrt{7^2 - 4x3x - 13} = -7 \pm \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$=-6\pm\sqrt{796}$$

$$x = -6 \pm \sqrt{36 - (4x2x - 95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$x = 5.55$$
 or $x = -8.55$

4) Solving Quadratics Using the Formula: Medium

8. The diagram below shows a 6-sided shape.

All the corners are right angles.

All measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 25 cm^2 .

(a) Show that
$$6x^2 + 17x - 39 = 0$$

Area $A = (3x + 5)(3x - 2)$ Area $B = 2(3x - 2)$
 $= 6x^2 - 4x + 15x - 10$ $= 6x^2 + 11x - 10$
 $= 6x^2 + 11x - 10$ So $6x^2 + 17x - 14 = 25$
(b) (i) Solve the equation $6x^2 + 17x - 14 = 25$

$$6x^{2} + 17x - 39 = 0$$

$$\alpha = 6 \quad b = 17 \quad c = -39$$

$$x = -17 \pm \sqrt{17^{2} - 4(6)(-39)}$$

$$x = 1.5 \quad \text{or} \quad x = -4.3$$

x = or x =

(ii) Hence work out the length of the longest side of the shape.

$$(2 \times 1.5) + 5 = 8$$

......S......cm

4) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$
18
$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = 4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

5) Venn diagrams.: Easier

Solution for Question 1:

Number of people that owned dogs only: 64 - 34 = 30

Number of people that owned cats only: 80 - 34 - 30 = 16

Solution for Question 2:

- a) Number of people that only had a black pen: 60 37 18 = 5
- b) Probability of a person owning both types of pen:

$$\frac{18}{60} = \frac{3}{10}$$

5) Venn diagrams.: Medium

Solution for Question 3:

Solution for Question 4:

a) Tea: 6 + 12 = 18Coffee: 9 + 12 = 21

Therefore, False

- b) False
- c) False

Solution for Question 5:

a) i) $A \cap B = A \text{ and } B = \{9,15\}$

ii) A U B = A or B = $\{3,5,6,12,18\}$

5) Venn diagrams.: Harder

Solution for Question 6:

Number of people who replied with cats only:

$$b-a-4$$

RYAN Natalie

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: RY91901, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Index Notation. Mathswatch Clip: 131

Topic 2: Bearings. Mathswatch Clip: 124

Topic 3: Standard Form. Mathswatch Clip: 83

Topic 4: Changing Ratios. Mathswatch Clip: NA

Topic 5: More Difficult Rearranging Formulae. MW: 190

1) Index Notation: Easier

1.	(a)	Simplify	$m^3 \times m^6$	-	W 3+6

(b) Simplify
$$\frac{p^8}{p^2}$$
 ρ^{8-2}

Simplify
$$(2n^3)^4$$
 16 n 3×4

$$16 n^{12}$$

(4 marks)

(2)

2. (a) Simplify
$$m^6 \times m^7$$
 $M^6 + 7$

(b) Simplify
$$x^0$$

(c) Simplify
$$(16y^6)^{\frac{1}{2}}$$

3. (a) Simplify
$$m^5 \div m^3$$

(b) Simplify
$$5x^4y^3 \times x^2y$$

Simplify
$$5x^4y^3 \times x^2y$$

$$5x^4y^3 \times x^2y$$

$$(2)$$

(3 marks)

1) Index Notation: Medium

4. (a) Simplify
$$a^4 \times a^5$$

$$\frac{45e^{6}f^{8}}{5ef^{2}}$$

$$\frac{45e^{6}f^{8}}{5ef^{2}}$$
 9e⁶⁻¹ F ⁸⁻²

Write down the value of $9^{\frac{1}{2}}$ (c)

(4 marks)

$$m^2 \times m^4 \,$$

$$y^7 \div y^5$$

 $(m^3)^5$

(4 marks)

6. Simplify fully

(a)
$$p^2 \times p^7$$

$$\frac{3q^4 \times 2q^5}{q^3}$$

$$(3\times2)q^{4+5} = 6q^{9-8}$$

(c)
$$(2xy^3)^5$$

$$2^5 x^5 y^{3x}$$

$$32 \times 54^{15}$$

1) Index Notation: Harder

20. (a) Find the value of

(ii)
$$64^{\frac{1}{2}}$$
 $\sqrt{64}$

(iii)
$$64^{-\frac{2}{3}} = \frac{1}{64^{\frac{7}{3}}}$$

$$= (\sqrt[3]{64})^2 = \frac{1}{4^2}$$

2) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

2) Bearings: Medium

3.

(b) On the diagram, draw a line on a bearing of 107° from A.

clockwise

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

(b) Mark the position of R with a cross (×) and label it R.

(2)

2) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

3) Standard Form: Easier

1. (a) Write the number 0.00037 in standard form.

()

- 3.7×10⁴
- (b) Write $8.25 \times 10^{\frac{3}{3}}$ as an ordinary number.

(1)

- 8250
- (c) Work out $(2.1 \times 10^8) \times (6 \times 10^{-5})$. Write your answer in standard form.

$$2.1 \times 10^{8} \times 6 \times 10^{-5}$$

$$= 12.6 \times 10^{3}$$

$$= 1.26 \times 10^{4}$$

1.26×10⁴ (2)

(4 marks)

2. (a) Write 6.43×10^5 as an ordinary number.

643000

(1)

(b) Work out the value of $2 \times 10^7 \times 8 \times 10^{-12}$ Give your answer in standard form.

$$2 \times 10^{7} \times 8 \times 10^{-12}$$

$$= 16 \times 10^{-5}$$

$$= 1.6 \times 10^{-4}$$

1.6×10-4

(2)

(3 marks)

3) Standard Form: Medium

(1)

(b) Write 6.7×10^{-5} as an ordinary number.

6,0000.0

(c) Work out the value of $(3 \times 10^7) \times (9 \times 10^6)$ Give your answer in standard form.

$$3 \times 10^{7} \times 9 \times 10^{6}$$

= 27×10^{13}
= 2.7×10^{14}

 $2.7 \times 10^{14} \tag{2}$

(4 marks)

4. (a) Write 8.2×10^5 as an ordinary number.

820000

(b) Write 0.000 376 in standard form.

3,76 ×10⁻⁴

(c) Work out the value of $(2.3 \times 10^{12}) \div (4.6 \times 10^{3})$ Give your answer in standard form.

$$\frac{2.3 \times 10^{12}}{4.6 \times 10^3} = 0.5 \times 10^9$$
$$= 5 \times 10^8$$

5×10⁸ (2)

(4 marks)

3) Standard Form: Harder

Worded Standard Form

1) The world's smallest snail travels 4×10^{-3} m a month. How many months would it take for the snail to travel? 2×10^{-1} m?

2)

The time taken for light to reach Earth from the edge of the known universe is 14 000 000 000 years.

Light travels at the speed of 9.46×10^{12} km/year.

Work out the distance, in kilometres, from the edge of the known universe to Earth. Give your answer in standard form.

$$S = \frac{D}{T}$$

$$D = 9.46 \times 10^{12} \times 1.4 \times 10^{10}$$

$$= 13.244 \times 10^{22}$$

$$= 1.3244 \times 10^{23}$$

4) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

4) Changing Ratios: Medium

Solution for Question 3:

$$1:3:5$$
 $1:3+5=1:8$

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

4) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

5) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$2 = d + ac$$

$$a$$

$$q = \frac{\partial}{\partial t} + ac$$
(3)
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$M + 21 = 5n$$
 $N = M + 21$
 $S = 5n$

5) More Difficult Rearranging Formulae: Medium

(b) Make
$$p$$
 the subject of the formula $4(p-2q) = 3p + 2$

$$g = \dots$$
 (3)

(Total 5 marks)

$$P = \pi r + 2r + 2a$$

Make r the subject of the formula

RYAN Natalie, Page 383 /480 =

5) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fu = uv$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$fv$$

STREET Tom

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: ST91902, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Angles in Polygons. Mathswatch Clip: 123

Topic 2: Bearings. Mathswatch Clip: 124

Topic 3: Changing Ratios. Mathswatch Clip: NA

Topic 4: Venn diagrams.. Mathswatch Clip: 127

Topic 5: Inequalities Regions. Mathswatch Clip: 198

1) Angles in Polygons: Easier

1. Each exterior angle of a regular polygon is 30°.

Work out the number of sides of the polygon.

(2 marks)

2.

Diagram **NOT** accurately drawn

Work out the size of an exterior angle of a regular pentagon.

72 .

(2 marks)

3.

Diagram **NOT** accurately drawn

Calculate the size of the exterior angle of a regular hexagon.

1) Angles in Polygons: Medium

4. The size of each exterior angle of a regular polygon is 40°.

Work out the number of sides of the regular polygon.

9		
	(2	marks)

5. The size of each interior angle of a regular polygon is 156°. Work out the number of sides of the polygon.

$$180 - 156 = 24$$
 (Extenor angle)
 $360 - 24 = 15$

(3 marks)

6. Here is a regular polygon with 9 sides.

Diagram NOT accurately drawn

Work out the size of an exterior angle.

40 .

1) Angles in Polygons: Harder

11.

Diagram **NOT** accurately drawn

ABCDE and EHJKL are regular pentagons. AEL is an equilateral triangle.

Work out the size of angle DEH.

Pentagon:
$$\frac{180 \times (n-2)}{n}$$

= $\frac{180 \times 3}{5} = \frac{540}{5} = 108$

84 (4 marks)

2) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

2) Bearings: Medium

3.

(b) On the diagram, draw a line on a bearing of 107° from A.

clockwise

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

On the map R is 6 cm from Q.

(b) Mark the position of R with a cross (×) and label it R.

(2)

2) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

3) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

3) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

3) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

4) Venn diagrams.: Easier

Solution for Question 1:

Number of people that owned dogs only: 64 - 34 = 30

Number of people that owned cats only: 80 - 34 - 30 = 16

Solution for Question 2:

- a) Number of people that only had a black pen: 60 37 18 = 5
- b) Probability of a person owning both types of pen:

$$\frac{18}{60} = \frac{3}{10}$$

4) Venn diagrams.: Medium

Solution for Question 3:

Solution for Question 4:

a) Tea: 6 + 12 = 18Coffee: 9 + 12 = 21

Therefore, False

- b) False
- c) False

Solution for Question 5:

a) i)
$$A \cap B = A \text{ and } B = \{9,15\}$$

ii) A U B = A or B =
$$\{3,5,6,12,18\}$$

4) Venn diagrams.: Harder

Solution for Question 6:

Number of people who replied with cats only:

$$b-a-4$$

5) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad x < 2 \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

5) Inequalities Regions: Medium

2. The region R satisfies the inequalities

$$x \ge 2$$
, $y \ge 1$, $x + y \le 6$

On the grid below, draw straight lines and use shading to show the region R.

5) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

TALMAGE Rheanna

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: TA91903, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Angles in Polygons. Mathswatch Clip: 123

Topic 2: Bearings. Mathswatch Clip: 124

Topic 3: Simple Bounds. Mathswatch Clip: 132

Topic 4: Changing Ratios. Mathswatch Clip: NA

Topic 5: Solving Quadratics Using the Formula. MW: 191

1) Angles in Polygons: Easier

1. Each exterior angle of a regular polygon is 30°.

Work out the number of sides of the polygon.

(2 marks)

2.

Diagram **NOT** accurately drawn

Work out the size of an exterior angle of a regular pentagon.

72 .

(2 marks)

3.

Diagram **NOT** accurately drawn

Calculate the size of the exterior angle of a regular hexagon.

1) Angles in Polygons: Medium

4. The size of each exterior angle of a regular polygon is 40°.

Work out the number of sides of the regular polygon.

(2 marks)

5. The size of each interior angle of a regular polygon is 156°. Work out the number of sides of the polygon.

$$180 - 156 = 24$$
 (Extenor angle)
 $360 = 24 = 15$

(3 marks)

6. Here is a regular polygon with 9 sides.

Diagram NOT accurately drawn

Work out the size of an exterior angle.

40 .

1) Angles in Polygons: Harder

11.

Diagram **NOT** accurately drawn

ABCDE and EHJKL are regular pentagons. AEL is an equilateral triangle.

Work out the size of angle DEH.

Pentagon:
$$\frac{180 \times (n-2)}{n}$$

= $\frac{180 \times 3}{5} = \frac{540}{5} = 108$

84 (4 marks)

2) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

(a) Write down the bearing of A from P.

360-140

220 .

(3 marks)

2) Bearings: Medium

3.

On the diagram, draw a line on a bearing of 107° from A.

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

(b) Mark the position of R with a cross (×) and label it R.

(2)

2) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

3) Simple Bounds: Easier

 A piece of string has a length of 55 mm to the nearest mm. (a) Write down the shortest possible length of the piece of string. 		
(a) Write down the shortest possible length of the piece of string. (b) Write down the greatest possible length of the piece of string.	<u>54.5</u>	mm (1)
	<u>55.5</u>	mm (1) (2 marks)
2. Chelsea's height is 158 cm to the nearest cm. (a) Write down Chelsea's minimum possible height.	157.5	s cm
(b) Write down Chelsea's maximum possible height.		(1)
	158.5	(1) (2 marks)

3) Simple Bounds: Medium

3.		ne nearest decimal pla e nearest whole numb			
	a) What is the erro	r interval for A?			
				4.15 ≤ <i>A</i> <	
) 	_ cm (1)
	b) What is the lower	er bound of B?			
				12.5	
					_ cm (1)
	c) What is the erro	r interval of A + B?			X - 1
			4.15 + 12.5 = 16.65 4.25 + 13.5 = 17.75		
			16	$6.65 \le A + B \le 17.75$	

cm

(1)

3) Simple Bounds: Harder

4.

The sides of the rectangle above are measured to the nearest cm.

a) Work out a lower bound for the perimeter.

Lower bounds for the sides are 4.5cm and 7.5cm So lower bounds for perimeter is $2\times4.5+2\times7.5=9+15=24cm$

<u>24cm</u>

b) Work out the upper bound for the perimeter.

Upper bounds for the sides are 5.5cm and 8.5cm So lower bounds for perimeter is $2 \times 5.5 + 2 \times 8.5 = 11 + 17 = 28cm$

28cm (4 marks)

5. Tom has 100 identical pens.

Each of these pen weighs 5 grams to the nearest gram.

Work out the greatest possible total weight of all 100 pens. Give your answer in kilograms.

Upper bound for weight of one pen: 5.5 g So for 100 pens upper bound is $100 \times 5.5 = 550g$ One kilogram = 1000 grams so

550g = 0.55kg

TALMAGE Rheanna, Page 410 /480 kg

(3 marks)

PINPOINT

4) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12 Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

PINPOINT

4) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3
2:3 = 5
x:51 = y
\frac{51}{3} = 17
x = 2 \times 17 = 34
v = 5 \times 17 = 85
Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51Multiply ratio 10:17 by 3 30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

PINPOINT

4) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

5) Solving Quadratics Using the Formula: Easier

Solve $3x^2 + 7x - 13 = 0$ amen's Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b \pm \sqrt{b^2 - 4ac}$$

$$= -7 \pm \sqrt{7^2 - 4x3x - 13} = -7 \pm \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$=-6\pm\sqrt{796}$$

$$x = 5.55$$
 or $x = -8.55$

TALMAGE Rheanna, Page 414/480

5) Solving Quadratics Using the Formula: Medium

3. Solve $x^2 + 3x - 5 = 0$ Give your solutions correct to 4 significant figures.

$$\alpha = 1 \quad b = 3 \quad c = -5$$

$$\alpha = -b \pm \sqrt{b^2 - 4ac}$$

$$= -3 \pm \sqrt{9 - (4x + 1x - 5)}$$

$$= -3 \pm \sqrt{29}$$

$$= -3 \pm \sqrt{29}$$

$$\alpha = 1.192582404 \text{ or } -4.192582404$$

$$x = 1.193$$
 or -4.193

(3 marks)

4. Solve this quadratic equation.

$$x^2 - 5x - 8 = 0$$

Give your answers correct to 3 significant figures.

$$\alpha = 1 \quad b = -5 \quad c = -8$$

$$\alpha = \frac{5 \pm \sqrt{25 - (4 \times 1 \times - 8)}}{2}$$

$$= \frac{5 \pm \sqrt{57}}{2}$$

$$\alpha = 6.274917218 \quad \text{or } -1.274917218$$

$$x = \frac{1}{12} \frac{1}{1$$

5) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram **NOT** accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x \qquad = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$
18
$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = 4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

THOMPSON Angus

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: TH91904, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Bearings. Mathswatch Clip: 124

Topic 2: Missing Mean Questions. Mathswatch Clip: NA

Topic 3: Solving Quadratics Using the Formula. MW: 191

Topic 4: Inequalities Regions. Mathswatch Clip: 198

Topic 5: More Difficult Rearranging Formulae. MW: 190

1) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

(b) Work out the bearing of B from P.

360-140

Bearings are always 3 digits

060

220 .

(3 marks)

1) Bearings: Medium

9. The bearing of a ship from a lighthouse is 050°

Work out the bearing of the lighthouse from the ship.

DRAW A SKETCH!

If accurate, you can
measure the bearing

230 ...

(2 marks)

1) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

2) Missing Mean Questions: Easier

2) Missing Mean Questions: Medium

THOMPSON Angus, Page 422 /480

2) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

$$28 \times 10 = 280$$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 \ b = 5$$

3) Solving Quadratics Using the Formula: Easier

Solve $3x^2 + 7x - 13 = 0$ amen's Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b \pm \sqrt{b^2 - 4ac}$$

$$= -7 \pm \sqrt{7^2 - 4x^3x - 13} = -7 \pm \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$=-6\pm\sqrt{796}$$

$$x = 5.55$$
 or $x = -8.55$

THOMPSON Angus, Page 424 /480

3) Solving Quadratics Using the Formula: Medium

8. The diagram below shows a 6-sided shape.

All the corners are right angles.

All measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 25 cm^2 .

(a) Show that
$$6x^2 + 17x - 39 = 0$$

Area $A = (3x + 5)(3x - 2)$ Area $B = 2(3x - 2)$
 $= 6x^2 - 4x + 15x - 10$ $= 6x^2 + 17x - 14 = 25$
TOTAL TREA = $6x^2 + 11x - 10 + 6x - 4$ $= 6x^2 + 17x - 14 = 25$
(b) (i) Solve the equation

$$6x^{2} + 17x - 39 = 0$$

$$\alpha = 6 \quad b = 17 \quad c = -39$$

$$x = -17 \pm \sqrt{17^{2} - 4(6)(-39)}$$

$$x = 1.5 \quad \text{or} \quad x = -4.3$$

(ii) Hence work out the length of the longest side of the shape.

$$(2 \times 1.5) + 5 = 8$$

3) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram **NOT** accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x \qquad = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$
18
$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = 4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

1.38 cm

4) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad x < 2 \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

4) Inequalities Regions: Medium

6. (a) On the grid below, draw straight lines and use shading to show the region $\bf R$ that satisfies the inequalities

The point P with coordinates (x, y) lies inside the region \mathbb{R} . x and y are **integers**.

(b) Write down the coordinates of **all** the points of \mathbb{R} whose coordinates are both integers.

4) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

5) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$2 = d + ac$$

$$a$$

$$q = \frac{\partial}{\partial t} + ac$$
(3)
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$m + 21 = 5n$$
 $n = m + 21$

5) More Difficult Rearranging Formulae: Medium

10.
$$P = \frac{n^2 + a}{n + a}$$

Rearrange the formula to make a the subject.

$$p(n+a) = n^2 + a$$

$$pn + pa = n^2 + a$$

$$pa = a = n^2$$

$$a(p-1) = n^2$$

$$a = n^2$$

(Total 4 moule

(Total 4 marks)

$$\frac{x}{x+c} = \frac{p}{q}$$

Make x the subject of the formula.

$$x = p(x+c)$$

$$x(2-p) = cp$$

$$x(2-p) = cp$$

$$x(2-p) = cp$$

THOMPSON Angus, Page 431 /480

5) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fu = uv$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$u = fv$$

$$fv$$

THOMPSON Daniel

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: TH91905, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Missing Mean Questions. Mathswatch Clip: NA

Topic 2: Inequalities Regions. Mathswatch Clip: 198

Topic 3: More Difficult Rearranging Formulae. MW: 190

Topic 4: Proof. Mathswatch Clip: 193

Topic 5: Proof with vectors. Mathswatch Clip: 219

1) Missing Mean Questions: Easier

1) Missing Mean Questions: Medium

THOMPSON Daniel, Page 435 /480

1) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

 $28 \times 10 = 280$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

2) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$y > -4$$

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

2) Inequalities Regions: Medium

6. (a) On the grid below, draw straight lines and use shading to show the region \mathbb{R} that satisfies the inequalities

The point P with coordinates (x, y) lies inside the region \mathbb{R} . x and y are **integers**.

(b) Write down the coordinates of **all** the points of \mathbb{R} whose coordinates are both integers.

$$(2,2)$$
 $(2,3)$ $(2,4)$ $(3,3)$

2) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$
,

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

3) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$2 = d + ac$$

$$a$$

$$q = \frac{\partial}{\partial t} + ac$$
(3)
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$M + 21 = 5n$$
 $N = M + 21$
 $S = 5n$

3) More Difficult Rearranging Formulae: Medium

10.
$$P = \frac{n^2 + a}{n + a}$$

Rearrange the formula to make a the subject.

$$p(n+a) = n^2 + a$$

$$pn + pa = n^2 + a$$

$$pa = a = n^2$$

$$a(p-1) = n^2$$

$$a = n^2$$

(Total 4 mayle

(Total 4 marks)

$$\frac{x}{x+c} = \frac{p}{q}$$

Make x the subject of the formula.

$$x_2 : p(x+c)$$

$$x_2 : p(x+c)$$

$$x_2 : px+cp$$

$$x_2 : px+cp$$

$$x_3 : p : cp$$

$$x_4 : p : cp$$

$$x_4 : p : cp$$

THOMPSON Daniel, Page 441 /480

3) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fu = uv$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$u = fv$$

1. The nth even number is 2n.

The next even number after 2n is 2n + 2

(a) Explain why.

(b) Write down an expression, in terms of n, for the next even number after 2n+2

$$2n+2+2=2n+4$$
 $2n+4$ (1)

(c) Show algebraically that the sum of any 3 consecutive even numbers is always a multiple of 6

$$2n + 2n+2 + 2n+4$$
= $6n + 6$
= $6(n+1)$

A multiple of 6.

4) Proof: Medium

8. Prove that

 $(n+1)^2 - (n-1)^2 + 1$ is always odd for all positive integer values of n.

$$(n+1)^2 = n^2 + 2n + 1$$

 $(n-1)^2 = n^2 - 2n + 1$

$$(n+1)^{2} - (n-1)^{2} + 1 = (n^{2} + 2n + 1) - (n^{2} - 2n + 1) + 1$$
$$= n^{2} + 2n + 1 - n^{2} + 2n - 1 + 1$$
$$= 4n + 1$$

Len is a multiple of 4 so it must be even which means 4n+1 is odd.

9. Prove algebraically that the sum of the squares of any two consecutive numbers always leaves a remainder of 1 when divided by 4.

consecutive numbers are n and n+1
$$n^{2} + (n+1)^{2}$$

$$= n^{2} + n^{2} + 2n + 1$$

$$= 2n^{2} + 2n + 1$$

$$= 2n(n+1) + 1$$

n(n+1) is the product of 2 consecutive numbers. As one of them is even the product must be even.

2n(n+i) is 2 x an even number which has to be a multiple of 4

of 4 plus 1 and well leave a remainder of 1 when divided by 4

5) Proof with vectors: Easier

1.

ABCDEF is a regular hexagon, with centre O.

$$\overrightarrow{OA} = \mathbf{a}$$
, $\overrightarrow{OB} = \mathbf{b}$.

(a) Write the vector \overrightarrow{AB} in terms of a and b.

The line AB is extended to the point K so that AB : BK = 1 : 2

(b) Write the vector \overrightarrow{CK} in terms of a and b. Give your answer in its simplest form.

$$\overrightarrow{AB} = -a + b$$
 $\overrightarrow{BR} = -2a + 2b$
 $\overrightarrow{CR} = -a + 2b$

-a+2b

(4 marks)

5) Proof with vectors: Medium

6.

Diagram NOT accurately drawn

OPQ is a triangle.

R is the midpoint of OP.

S is the midpoint of PQ.

$$\overrightarrow{OP} = p$$
 and $\overrightarrow{OQ} = q$

(i) Find \overrightarrow{OS} in terms of p and q.

(ii) Show that RS is parallel to
$$OQ$$
.

 $\overrightarrow{os} = \frac{1}{2}(0+q)$

$$\overrightarrow{RP} = \frac{1}{2}p$$

$$\overrightarrow{RS} = \frac{1}{2}p - \frac{1}{2}p + \frac{1}{2}q$$

$$= \frac{1}{2}q$$

$$\therefore As \overrightarrow{CQ} = q \overrightarrow{RS} \text{ is parallel}$$

5) Proof with vectors: Harder

6.

OAB is a triangle.

$$\overrightarrow{OA} = 2\mathbf{a}$$

$$\overrightarrow{OB} = 3\mathbf{b}$$

(a) Find AB in terms of a and b.

$$\overline{AB} = -20 + 3b \tag{1}$$

P is the point on AB such that AP : PB = 2 : 3

(b) Show that \overrightarrow{OP} is parallel to the vector $\mathbf{a} + \mathbf{b}$.

$$AP = \frac{2}{5}(-2a+3b)$$

$$= -\frac{4}{5}a + \frac{6}{5}b$$

$$= \frac{2}{5}a - \frac{4}{5}a + \frac{6}{5}b$$

$$= \frac{6}{5}a + \frac{6}{5}b$$

$$= \frac{6}{5}(a+b)$$

(3)

(4 marks)

WATERS Tom

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: WA91906, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Angles in Polygons. Mathswatch Clip: 123

Topic 2: Bearings. Mathswatch Clip: 124

Topic 3: Missing Mean Questions. Mathswatch Clip: NA

Topic 4: Changing Ratios. Mathswatch Clip: NA

Topic 5: Inequalities Regions. Mathswatch Clip: 198

1) Angles in Polygons: Easier

1. Each exterior angle of a regular polygon is 30°.

Work out the number of sides of the polygon.

(2 marks)

2.

Diagram **NOT** accurately drawn

Work out the size of an exterior angle of a regular pentagon.

72 .

(2 marks)

3.

Diagram **NOT** accurately drawn

Calculate the size of the exterior angle of a regular hexagon.

1) Angles in Polygons: Medium

10.

The diagram shows a square and 4 regular pentagons.

Work out the size of the angle marked x.

Pentagon =
$$180 \times (n-2)$$

= $180 \times 3 = 540 = 108$
 $\frac{5}{5} = \frac{108}{5} = \frac{108}{5}$

54...

(4 marks)

1) Angles in Polygons: Harder

11.

Diagram **NOT** accurately drawn

ABCDE and EHJKL are regular pentagons. AEL is an equilateral triangle.

Work out the size of angle DEH.

Pentagon:
$$\frac{180 \times (n-2)}{n}$$

= $\frac{180 \times 3}{5} = \frac{540}{5} = 108$

84 (4 marks)

2) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

2) Bearings: Medium

9. The bearing of a ship from a lighthouse is 050°

Work out the bearing of the lighthouse from the ship.

DRAW A SKETCH!

If accurate, you can
measure the bearing

230

(2 marks)

2) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

3) Missing Mean Questions: Easier

3) Missing Mean Questions: Medium

WATERS Tom, Page 457 /480

3) Missing Mean Questions: Harder

6) Waitresses and kitchen staff in a restaurant decide to share their tips. There are 8 kitchen staff 10 waitresses. The kitchen staff receives a mean of £23 weekly and the waitresses receive a mean of £28 weekly.

Work out the mean of all 18 members of staff.

Solution:
$$23 \times 8 = 184$$

 $28 \times 10 = 280$

$$Total = 184 + 280 = 464$$

Mean =
$$464/18 = 25.78$$

____£25.78_____

(3 Marks)

7) The mean of a, a, b is 30

The mean of a, a, b, b, b is 20

Find the values of a and b

Solution:

$$(2a + b) / 3 = 30$$
 x 3

$$(2a + 3b) / 5 = 20$$
 x 5

$$2a + b = 90$$
 - solve simultaneously

$$2a + 3b = 100$$

$$-2b = -10$$

$$b = 5$$

$$2a + 5 = 90$$

$$2a = 85$$

$$a = 42.5$$

$$a = 42.5 b = 5$$

PINPOINT

4) Changing Ratios: Easier

Solution for Question 1:

a) Red: Blue = 8:12Divide through by 4 to simplify: 2:3

b) Red: Blue = 8:10 Divide through by 2 to simplify: 4:5

Solution for Question 2:

a) Pen: Pencils = 2:3 Equivalent to 20:30 30 pencils in pencil case

b) Only pencils removed so still 20 pens, ratio 4:3 equivalent to 20:15 so removed 15 pencils

PINPOINT

4) Changing Ratios: Medium

Solution for Question 3:

Solution for Question 4:

```
Orange: Red = 2:3

2:3 = 5

x:51 = y

\frac{51}{3} = 17

x = 2 \times 17 = 34

y = 5 \times 17 = 85

Ratio of Orange to Red = 34:51
```

Compare 2:3 to 10:17, achieving same number for red sweets 2:3 = 34:51
Multiply ratio 10:17 by 3
30:51

4 orange sweets were eaten by Solomon.

Solution for Question 5:

HW: No HW = 5:4

$$5:4 = 9$$

 $15:x = y$
 $\frac{15}{5} = 3$
 $x = 4 \times 3 = 12$
 $y = 9 \times 3 = 27$
Ratio of HW done to HW not done = 15:12
Compare 5:4 to 2:1
 $5:4 = 15:12$
 $2:1 = ?:?$
Same number of pupils in the class = 27
Multiply ratio 2:1 by $9(\frac{27}{3})$
18:9
3 more pupils did do their homework, the teacher was correct.

PINPOINT

4) Changing Ratios: Harder

Solution for Question 6:

Sedimentary: Metamorphic = 2:3 Metamorphic: Igneous = 9:10

Multiply ratio 2:3 by 3 = 6:9

Therefore, sedimentary to igneous = 6:10

Solution for Question 7:

Road bikes: Mountain bikes

3:5

The minimum number of bikes sold is 3 road and 5 mountain, if the ratio changes to 2:1 but no more mountain bikes are sold then ratio is 10:5 so 7 more road bikes must have been sold.

It is not the only answer as there could have been many numbers of bikes sold, the ratio is 3:5 this could be 6:10 or any equivalent ratio. If it was 6 to 10 for example to change to 2:1 ratio must be 20:10 which would mean 14 more road bikes sold, so the number more road bikes sold is any multiple of 7

5) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

5) Inequalities Regions: Medium

6. (a) On the grid below, draw straight lines and use shading to show the region \mathbb{R} that satisfies the inequalities

The point P with coordinates (x, y) lies inside the region \mathbb{R} . x and y are **integers**.

(b) Write down the coordinates of **all** the points of \mathbb{R} whose coordinates are both integers.

$$(2,2)$$
 $(2,3)$ $(2,4)$ $(3,3)$

5) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$
,

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

WATKINS Tom

9to1_AQA_PracticeSet2_3H

Login to www.pinpointlearning.co.uk

Username: WA91907, Password: PPL

Your Exam Statistics

Strand	Overall	Number	Algebra	Data	Shape	Ratio
AO1	from	from	from	from	from	from
A02 and 3	from	from	from	from	from	from
Total	from	from	from	from	from	from

Your Pinpoint Topics

Topic 1: Index Notation. Mathswatch Clip: 131

Topic 2: Bearings. Mathswatch Clip: 124

Topic 3: Solving Quadratics Using the Formula. MW: 191

Topic 4: Inequalities Regions. Mathswatch Clip: 198

Topic 5: More Difficult Rearranging Formulae. MW: 190

1) Index Notation: Easier

1. (a) Simplify
$$m^3 \times m^6 = M$$

(b) Simplify
$$\frac{p^8}{p^2}$$
 ρ^{8-2}

(c) Simplify
$$(2n^3)^4$$
 $(6 n^3 \times 4)$

(4 marks)

2. (a) Simplify
$$m^6 \times m^7$$
 $M^6 + 7$

(b) Simplify
$$x^0$$

(c) Simplify
$$(16y^6)^{\frac{1}{2}}$$

(4 marks)

(2)

3. (a) Simplify
$$m^5 \div m^3$$

(b) Simplify
$$5x^4y^3 \times x^2y$$

$$5 \times 4^{+2} \cdot y^{3+1}$$

$$5x^{6}y^{4}$$

1) Index Notation: Medium

4. (a) Simplify
$$a^4 \times a^5$$

$$\frac{45e^{6}f^{8}}{5ef^{2}}$$

$$\frac{45e^{6}f^{8}}{5ef^{2}}$$
 9e⁶⁻¹ F ⁸⁻²

Write down the value of $9^{\frac{1}{2}}$ (c)

(4 marks)

$$m^2 \times m^4 \,$$

$$y^7 \div y^5$$

 $(m^3)^5$

(4 marks)

(2)

6. Simplify fully

(a)
$$p^2 \times p^7$$

(b)
$$\frac{3q^4 \times 2q^5}{q^3}$$

$$(3x2)q^{4+5} = 6q^{9-3}$$

(c)
$$(2xy^3)^5$$

$$2^5 x^5 y^{3x}$$

$$32 \times 54^{15}$$

1) Index Notation: Harder

20. (a) Find the value of

(ii)
$$64^{\frac{1}{2}}$$
 $\sqrt{64}$

(iii)
$$64^{-\frac{2}{3}} = \frac{1}{64^{\frac{2}{3}}}$$

$$= (\sqrt[3]{64})^2 = \frac{1}{4^2}$$

2) Bearings: Easier

1.

Diagram NOT accurately drawn

180+40

Work out the bearing of B from A.

START POINT

220 .

(2 marks)

2.

(a) Write down the bearing of A from P.

Bearings are always 3 digits

(b) Work out the bearing of B from P.

360-140

220 .

(3 marks)

2) Bearings: Medium

3.

(b) On the diagram, draw a line on a bearing of 107° from A.

clockwise

(1) (2 marks)

4. The diagram shows the position of two ports P and Q on a map.

(b) Mark the position of R with a cross (×) and label it R.

(2)

2) Bearings: Harder

Solutions for Question 1:

Identify angle XYZ: 80°

If XY = ZY

:.

Isosceles triangle

Angle Z = Angle X:

$$\frac{180 - 80}{2} = 50^{\circ}$$

Bearing of Z from X: $020^{\circ} + 050^{\circ}$

70°

Solutions for Questions 2:

Construct bearings:

Construct triangle; identify all angles in the triangle:

Use trigonometry to find x:

$$\sin 45 = \frac{5}{x}$$

$$x = \frac{5}{\sin 45}$$

$$x = 5\sqrt{2}$$

x = 7.07 miles

3) Solving Quadratics Using the Formula: Easier

Solve $3x^2 + 7x - 13 = 0$ amen's Give your solutions correct to 2 decimal places.

$$a=3$$
 $b=7$ $c=-13$

$$x = -b + \sqrt{b^2 - 4ac}$$

$$= -7 + \sqrt{7^2 - 4x^3x - 13} = -7 + \sqrt{205}$$

$$= 2x3$$

$$x = 1.22$$
 or $x = -3.55$ (3 marks)

2. Solve the equation

$$2x^2 + 6x - 95 = 0$$

Give your solutions correct to 3 significant figures.

$$a=2$$
 $b=6$ $c=-95$

$$x = -6 \pm \sqrt{36 - (4 \times 2 \times -95)}$$

$$= -6 \pm \sqrt{796}$$

$$= -6 \pm \sqrt{796}$$

$$= 5.55336799 \quad \text{or} \quad -8.55336799$$

$$x = 6.55$$
 or $x = -8.55$

3) Solving Quadratics Using the Formula: Medium

3. Solve $x^2 + 3x - 5 = 0$ Give your solutions correct to 4 significant figures.

$$\alpha = 1 \quad b = 3 \quad c = -5$$

$$\alpha = -b \pm \sqrt{b^2 - 4ac}$$

$$= -3 \pm \sqrt{9 - (4x \times 1x - 5)}$$

$$= -3 \pm \sqrt{29}$$

$$= -3 \pm \sqrt{29}$$

$$\alpha = 1.192582404 \text{ or } -4.192582404$$

$$x = 1.193$$
 or -4.193

(3 marks)

4. Solve this quadratic equation.

$$x^2 - 5x - 8 = 0$$

Give your answers correct to 3 significant figures.

$$\alpha = 1 \quad b = -5 \quad c = -8$$

$$\alpha = 5 \pm \sqrt{25 - (4x1x - 8)}$$

$$= 5 \pm \sqrt{57}$$

$$2$$

$$\alpha = 6.274917218 \quad \text{or } -1.274917218$$

$$x = ...6$$
 WATKINS Form, Page 4739486 = ... 1 . 2 7

3) Solving Quadratics Using the Formula: Harder

9. The diagram shows a 6-sided shape.

All the corners are right angles.

All the measurements are given in centimetres.

Diagram NOT accurately drawn

The area of the shape is 85 cm^2 .

(a) Show that
$$9x^2 - 17x - 85 = 0$$

$$A = 3x(2x - 7) \qquad B = x(3x + 4)$$

$$= 6x^2 - 21x \qquad = 3x^2 + 4x \qquad = 85$$

$$6x^2 - 21x + 3x^2 + 4x = 85$$

$$9x^2 - 17x - 85 = 0$$
(3)

(b) (i) Solve
$$9x^2 - 17x - 85 = 0$$

Give your solutions correct to 3 significant figures.

$$\alpha = 9 \ b = -17 \ c = -85$$

$$x = 17 \pm \sqrt{17^2 - 4(9)(-85)}$$
18
$$x = 4 \cdot 159474732 \text{ or } x = -2 \cdot 270585844$$

$$x = 4.16$$
 or $x = -2.27$

(ii) Hence, work out the length of the shortest side of the 6-sided shape.

1.38 cm

4) Inequalities Regions: Easier

1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

4) Inequalities Regions: Medium

2. The region R satisfies the inequalities

$$x \ge 2$$
, $y \ge 1$, $x + y \le 6$

On the grid below, draw straight lines and use shading to show the region R.

4) Inequalities Regions: Harder

7.
$$4x + 3y < 12$$

$$4x + 3y < 12,$$
 $y < 3x,$ $y > 0,$ $x > 0$

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which

(Total 5 marks)

5) More Difficult Rearranging Formulae: Easier

1. Rearrange a(q-c) = d to make q the subject.

$$a_2 - ac = d$$

$$a_2 = d + ac$$

$$2 = d + ac$$

$$a$$

$$q = \frac{\partial}{\partial t} + \alpha C \tag{3}$$
(Total 5 marks)

2. (a) Make n the subject of the formula m = 5n - 21

$$m + 21 = 5n$$
 $n = m + 21$

5) More Difficult Rearranging Formulae: Medium

(b) Make
$$p$$
 the subject of the formula $4(p-2q) = 3p + 2$

(3)

(Total 5 marks)

$$P = \pi r + 2r + 2a$$

the subject of the formula Make

5) More Difficult Rearranging Formulae: Harder

12. Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

to make u the subject of the formula.

Give your answer in its simplest form.

$$fv + fu = uv$$

$$fu - uv = fv$$

$$u(f - v) = fv$$

$$u = fv$$

$$u = fv$$